

11-12
DECEMBER
2025 |

ІННОВАЦІЙНІ ТЕХНОЛОГІЇ І МАТЕРІАЛИ ДЛЯ ПРОМИСЛОВОСТІ ТА ДОВКІЛЛЯ (ITMIE 2025)

*Dedicated to the anniversary of the
research laboratory of minerals*

• • • INNOVATIVE TECHNOLOGIES AND MATERIALS
• • • FOR INDUSTRY AND THE ENVIRONMENT
• • • (ITMIE 2025)

Міністерство освіти і науки України
Хмельницький національний університет
AGH Університет науки і технологій у Krakovі, Польща
Федеральна вища технічна школа в Цюріху, Швейцарія
Технічний університет Лібереця, Чехія
Жилінський технічний університет, Словаччина
Університет Осло, Норвегія

ІННОВАЦІЙНІ ТЕХНОЛОГІЇ І МАТЕРІАЛИ ДЛЯ ПРОМИСЛОВОСТІ ТА ДОВКІЛЛЯ (ITMIE 2025)

Збірник матеріалів
Міжнародної науково-практичної конференції,
присвяченої 10-річчю Лабораторії досліджень мінералів
кафедри хімії та хімічної інженерії

11–12 грудня 2025 (Хмельницький, Україна)

Хмельницький

*Рекомендовано до друку рішенням науково-технічної ради
Хмельницького національного університету,
протокол № 11 від 25.11.2025*

Представлені доповіді Міжнародної НПК «Інноваційні технології і матеріали для промисловості та довкілля», що відбулася 11–12 грудня 2025 (Хмельницький, Україна). Матеріали були розглянуті під час роботи секцій: 1) Інноваційні технологічні рішення в галузі; ресурсозбереження, зеленої хімії та сталого розвитку; 2) Сучасні матеріали та технології для промисловості, енергетики, транспорту та будівництва; 3) Технології переробки, утилізації та повторного використання відходів; 4) Діджитал-технології для оптимізації, моніторингу та управління виробничими процесами. 5) Соціальні, економічні та освітні аспекти впровадження інноваційних матеріалів і технологій.

Матеріали, включенні до збірника, подані в авторській редакції. Автори публікацій несуть повну відповідальність за достовірність наведеної інформації, власних імен, назв, цитат та інших відомостей.

Редакційна колегія:

Параска О. (Україна, м. Хмельницький); **Радек Н.** (Польща, м. Кельце);
Петрашек Я. (Польща, м. Krakів); **Матюх С., Скиба М., Синюк О.** (Україна, м. Хмельницький);
Корицький Р. (Польща, м. Лодзь); **Петру М.** (Чехія, м. Ліберець); **Дудек А.** (Польща, м. Ченстохова);
Говорущенко Т., Миронова Н. (Україна, м. Хмельницький);
Березненко С., Приймак О. (Україна, м. Київ); **Брончек Я.** (Словаччина, м. Жиліна);
Бонек М. (Польща, м. Глівіце); **Козар О.** (Україна, м. Мукачево);
Сарібськова Ю. (Україна, м. Херсон); **Захаркевич О.** (Україна, м. Хмельницький).

Інноваційні технології і матеріали для промисловості та довкілля : зб. матеріалів Міжнар. наук.-практ. конф., присвяченої 10-річчю Лабораторії досліджень мінералів кафедри хімії та хімічної інженерії, 11–12 груд. 2025 (Хмельницький, Україна) / ред. кол.: О. Параска, Н. Радек, Я. Петрашек [та ін.]. – Хмельницький : ХНУ, 2025. – 154 с. (укр., англ.)

ISBN 978-966-330-457-1

Матеріали Міжнародної НПК відображають результати фундаментальних і прикладних досліджень науково-педагогічних працівників, молодих вчених, представників промисловості України і закордону. Розглянуто досягнення щодо раціонального використання інноваційних матеріалів, впровадження сучасних технологічних та соціально-економічних рішень, забезпечення сталого розвитку. Матеріали спрямовані на поширення результатів наукових досліджень, розвиток міждисциплінарної і міжнародної співпраці, зміцнення зв'язків між науковою, освітою і виробництвом.

Для науковців, науково-педагогічних працівників, фахівців закладів загальної середньої, професійної, фахової передвищої та вищої освіти, установ післядипломної освіти, аспірантів і здобувачів вищої освіти, фахівців з різних галузей промисловості.

УДК : 330.341.1:504:62

Ministry of education and science of Ukraine
Khmelnytskyi national university
AGH University of Krakow, Poland
ETH Zurich, Switzerland
Technical University of Liberec, Czech Republic
Technical University of Zilina, Slovakia
University of Oslo, Norway

INNOVATIVE TECHNOLOGIES AND MATERIALS FOR INDUSTRY AND THE ENVIRONMENT (ITMIE 2025)

Conference Proceedings
of the International Scientific and Practical Conference dedicated to the
10th anniversary of the Mineral Research Laboratory
of the Department of Chemistry and Chemical Engineering

11–12 December 2025 (Khmelnytskyi, Ukraine)

Khmelnytskyi

*Recommended for printing by the decision of the Scientific and Technical Council
of Khmelnytskyi National University,
council meeting № 11 from 25.11.2025*

Abstracts of the report of the International Scientific and Technical Conference "Innovative technologies and materials for industry and the environment", held on December 11–12, 2025 (Khmelnytskyi, Ukraine), were presented. The materials were considered during the work of the sections: 1) Innovative technological solutions in the field of resource saving, green chemistry and sustainable development; 2) Modern materials and technologies for industry, energy, transport and construction; 3) Technologies for processing, recycling and reuse of waste; 4) Digital technologies for optimization, monitoring and management of production processes; 5) Social, economic and educational aspects of the implementation of innovative materials and technologies.

Conference Proceedings are submitted in the author's original version. The authors of the publications are responsible for the accuracy of the information provided, their own names, titles, quotes, and other information.

Editorial Board:

Paraska O. (Ukraine, Khmelnytskyi); **Radek N.** (Poland, Kielce); **Petraszek J.** (Poland, Krakow);

Matiukh S., Skyba M., Synyuk O. (Ukraine, Khmelnytskyi); **Korytsky R.** (Poland, Lodz);

Dudek A. (Poland, Częstochowa); **Petru M.** (Czech Republic, Liberec); **Govorushchenko T., Myronova N.**

(Ukraine, Khmelnytskyi); **Bereznenko S., Pryimak O.** (Ukraine, Kyiv); **Bronchek J.** (Slovakia, Žilina);

Bonek M. (Poland, Gliwice); **Kozar O.** (Ukraine, Mukachevo); **Saribekova Y.** (Ukraine, Kherson);

Zakharkeych O. (Ukraine, Khmelnytskyi)

Innovative technologies and materials for industry and the environment : Conference proceedings International scientific and practical conference dedicated to the 10th anniversary of the Mineral Research Laboratory of the Department of Chemistry and Chemical Engineering, December 11–12, 2025 (Khmelnytskyi, Ukraine) / ed. by: O. Paraska, N. Radek, Y. Petrashek [et al.]. – Khmelnytskyi : KhNU, 2025. – 154 p. (Ukr., Engl.).

ISBN 978-966-330-457-1

The Conference Proceedings of the International scientific and practical conference reflect the results of fundamental and applied research by scientific and pedagogical workers, young scientists, industry representatives from Ukraine and abroad. The current achievements in the field of rational use of innovative materials, the implementation of modern technological and socio-economic solutions, and ensuring sustainable development are presented. Conference Proceedings are aimed at disseminating the results of scientific research, developing interdisciplinary and international cooperation, as well as strengthening ties between science, education and production.

For scientists, scientific and pedagogical workers, specialists of general secondary, vocational, specialized pre-higher and higher education institutions, postgraduate education institutions, graduate students and higher education applicants, specialists from various industries.

UDC : 330.341.1:504:62

СЕКЦІЯ 1 / SECTION 1

Інноваційні технологічні рішення в галузі ресурсозбереження, зеленої хімії та сталого розвитку

Innovative technological solutions
in resource saving, green chemistry
and sustainable development

THE GLOBAL GREEN CHEMISTRY INNOVATION AND NETWORKING PROGRAM IN UKRAINE: BUILDING CAPACITY, ACCELERATING INNOVATIONS AND STRENGTHENING INDUSTRY-SCIENCE PARTNERSHIPS

Olena Tabachuk^{*1}, Oleksandr Khokhotva²

¹*Resource Efficient and Cleaner Production Centre*

²*Національний технічний університет України*

«Київський політехнічний інститут імені Ігоря Сікорського»

**Corresponding author: o.tabachuk@recpc.org, Kyiv, 10-G, Starokyivska Str., 04116*

The Global Green Chemistry Innovation and Networking Program (GGINP) supports Ukraine in accelerating green chemistry innovations, strengthening capacity, and fostering collaboration between industry, science, and government. Through training, innovation programs, and practical demonstrations, it drives safer chemicals, cleaner production, and sustainable industrial development.

Keywords: green chemistry, innovation, capacity building, accelerator.

1. Introduction

Ukraine, a country with a strong industrial foundation, faces persistent challenges related to environmental pollution, inefficient resource use, and reliance on outdated or hazardous technologies. These issues affect ecosystems, public health, and the long-term competitiveness of national industries. In this context, green chemistry is emerging as a key driver of sustainable industrial transformation.

However, challenges such as regulatory gaps, financial constraints, and limited awareness remain. International programs and funding mechanisms play an essential role in supporting the adoption of green chemistry innovations, particularly those that directly enhance human and environmental health.

The Global GreenChem Innovation and Network Program (GGINP) is a flagship global initiative funded by the Global Environment Facility (GEF), led by United Nations Industrial Development Organization (UNIDO), and executed by the Center for Green Chemistry and Green Engineering at Yale University. The Program is implemented across six beneficiary countries – Indonesia, Jordan, Peru, Serbia, Uganda, and Ukraine [1]. In Ukraine, the Resource Efficient and Cleaner Production Centre (RECP Centre) serves as the national executor, responsible for implementing program activities, coordinating stakeholders, and supporting national innovation and capacity-building efforts.

The objective of GGINP is to strengthen the sound management of industrial chemicals and their waste through improved control, reduction, and elimination strategies. A specific focus is placed on scaling up green chemistry solutions for the replacement of persistent organic pollutants (POPs), mercury, and microplastics, supported through capacity building, innovation development, and the creation of a global green chemistry network [1].

2. Results and discussion

Green chemistry provides a strategic pathway for Ukraine to modernize its industries, reduce pollution, and improve public health outcomes. By shifting toward safer chemical alternatives, optimizing production processes, and minimizing waste generation, Ukrainian companies can reduce environmental impacts, contribute to a circular economy, and strengthen their position in international markets by aligning with global environmental and health standards.

Public-private partnerships, university-industry cooperation, and supportive regulatory frameworks are essential to accelerate this transition. To enhance collaboration across all sectors, the GGINP is implemented through three primary components [1]:

- Component 1 Green Chemistry Innovation and Inclusion Network for Capacity Building aims at the development of a robust Global Green Chemistry Innovation and Inclusion Network, connecting collectives and individuals, including scientists, entrepreneurs, and representatives from government, industry, academia, and non-governmental organizations.
- Component 2 Green Chemistry Accelerator Programme focuses on the establishment and execution of multi-year accelerator programmes, providing support and training for sustainable businesses and business ideas in the area of green chemistry, nurturing regional innovation ecosystems in the focus nations.
- Component 3 Green Chemistry alternatives for persistent organic pollutants (POPs), and mercury for upscaling and replication demonstrates green chemistry alternatives and capacities in selected chemical & waste related focus sectors.

Between 2023 and 2025, Ukraine made substantial progress through the implementation of the GGINP, advancing both national capacity and the broader green chemistry innovation landscape. One of the foundational steps was the active promotion of the Green Chemistry for Sustainability (GCS) Platform, a global digital ecosystem for networking, resource sharing, and collaboration among chemists, engineers, entrepreneurs, and sustainability practitioners. This helped better integrate Ukraine into international knowledge networks and expand access to global expertise.

A strong emphasis was placed on awareness-raising and capacity building. In total, 15 national events were organized, including informational sessions, educational workshops, and training activities, reaching more than 1100 participants from industry, academia, government, and civil society. These efforts significantly increased understanding of green chemistry principles and demonstrated their practical relevance for Ukraine's economic and environmental priorities. To further support informed decision-making, four detailed case studies were developed, providing practical guidance on replacing hazardous substances with safer and more sustainable alternatives.

Innovation support represented another cornerstone of the GGINP in Ukraine. The country successfully conducted two Global GreenChem Hackathons, during which interdisciplinary teams tackled real industrial challenges submitted by partner companies. The hackathons demonstrated the practical potential of green chemistry to solve industry needs while giving researchers and innovators valuable experience in refining their ideas, validating early hypotheses, and preparing for potential commercialization.

The Green Chemistry Accelerator Program was launched to further support early-stage projects and startups. Ukrainian scientists and innovators often have limited experience with commercialization, and such programs are crucial for helping teams move from an idea to real-world implementation. The accelerator also creates opportunities to build partnerships with potential industrial adopters – an essential step toward scaling new technologies.

In addition, the Program conducted an analysis of existing financing mechanisms to identify funding pathways for green chemistry innovations in Ukraine. This work mapped potential investment sources and support schemes, providing a foundation for future scaling and deployment of sustainable chemical technologies.

Together, these achievements illustrate the growing capacity, momentum, and commitment within Ukraine to adopt and advance green chemistry as a cornerstone of sustainable industrial development. By fostering national and international partnerships, Ukraine has the potential to become a leader in green industrial innovation. Green chemistry is not only an environmental necessity – it is an opportunity to drive industrial progress, enhance economic resilience, and contribute to global sustainability goals. The decisions made today will determine the country's ability to transition toward a cleaner, safer, and more competitive future, improving both planetary and human well-being.

Future directions for the Program in Ukraine increasingly focus on strengthening long-term scalability and ensuring that the achievements evolve into a stable national system for green

chemistry innovation. An important priority is the transition from awareness-raising to large-scale practical deployment of green chemistry solutions within key industrial sectors. This includes deeper integration of Ukrainian research teams into demonstration projects, where new formulations, cleaner processes, and safer chemical alternatives can be tested and validated in cooperation with industrial partners.

A major driver of scalability will be the continued development of the Green Chemistry Accelerator Program. The program can play a crucial role in bridging the gap between research institutions and enterprises, fostering conditions where new green chemistry solutions can be tested within real production environments. At the policy level, the Program can contribute to shaping a more supportive regulatory environment, offering evidence and practical examples that help national authorities integrate green chemistry principles into chemical safety and waste management policies. This would create long-term incentives for companies to adopt safer technologies.

References

[1] Globalgreenchem. Green Chemistry Innovation & Network Program. URL: <https://www.globalgreenchem.com/>.

[2] Центр ресурсоекспективного та чистого виробництва. Глобальна програма інновацій та мереж у зеленій хімії. URL: <https://www.recpc.org/global-greenchem-innovation-network-programme-ua/>.

ENVIRONMENTALLY SAFE TECHNOLOGIES FOR ANTIMICROBIAL TREATMENT OF FLEECE USING BIOSURFACTANTS

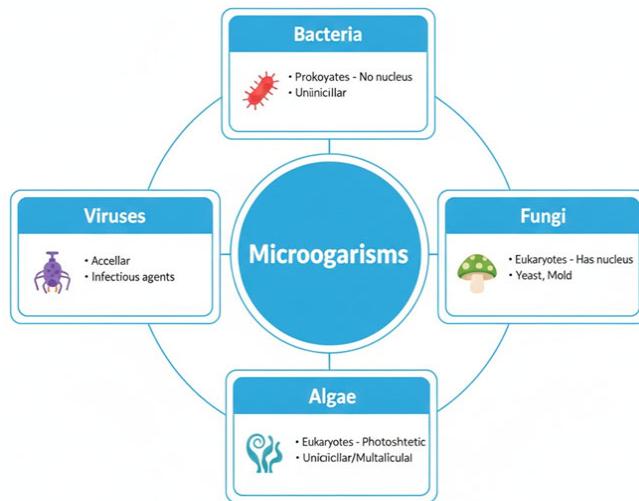
Vita Nehorui^{1*}, Olga Paraska², Michal Petru³

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

³*Technical University of Liberec, Liberec, Czech Republic*

*Corresponding author: negoruyvv@khnmu.edu.ua, Khmelnitskyi, 29008, Ukraine

Antimicrobial treatment of textile materials is a key area for improving their biostability and hygienic properties. The paper discusses modern antimicrobial agents, in particular biologically active surfactants (bio-surfactants), which combine high efficiency, stability and environmental safety. The promising use of bio-surfactants for the treatment of fleece materials to ensure a long-lasting antimicrobial effect is demonstrated.


Keywords: bio-surfactants, fleece materials, antimicrobial treatment, biocides, textile modifications.

1. Introduction

Textile fabrics are an ideal breeding ground for microorganisms because they have a large specific surface area and can retain the nutrients, oxygen, moisture and temperature necessary for growth. Biodegradation of textiles occurs through the destruction of fibres by microorganisms that feed on the organic components of the fabrics. The process is driven by enzymes that break down the polymers in the fibres. This leads to material deterioration, stains, unpleasant odours, and can also cause the transmission of diseases and infections to humans [1]. It is therefore vital to modify the surface properties of textiles with antimicrobial agents to prevent bacterial growth and make products safe for end use.

Antimicrobial coatings are applied to textile materials to ensure their resistance to biological degradation. Such treatments prevent the growth of bacteria and fungi that can cause rotting, loss of strength and gradual deterioration of the physical condition of the fabric. As a result, the material

retains its structure and performance characteristics for a long time, even under conditions of high humidity or intensive use [2].

Fig. 1 Classification of microorganisms

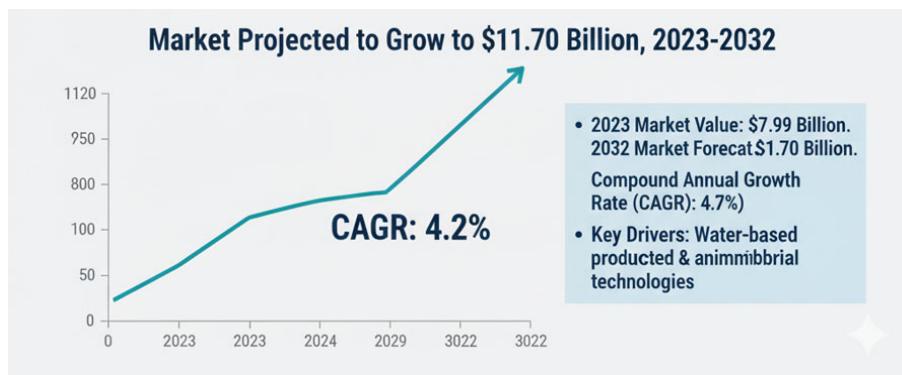
One of the key functions of antimicrobial textiles is to prevent cross-contamination with pathogenic microorganisms. Thanks to specific antimicrobial agents applied to the surface of fibres or integrated into their structure, the risk of transferring bacteria, fungi and viruses between different objects or users is reduced. This is especially important in medical, military, sports and domestic environments, where textiles are in active contact with the skin and the external environment.

The second important function is to suppress the metabolic activity of microorganisms, which reduces or completely eliminates unpleasant odours. Bacteria that decompose organic substances produce volatile compounds that cause odours. Antimicrobial treatments block these processes, ensuring that clothing stays fresh for a long time, which is especially important for sports, tourist and protective textiles.

The third function of antimicrobial materials is the control and prevention of microbial infections. By reducing the number of pathogenic microorganisms on the textile surface, such products help prevent the development of infections that can be transmitted through fabrics or arise from prolonged contact with contaminated material. This is especially important for medical gowns, military clothing, and children's products.

Several technological approaches are used to give fleece materials antimicrobial properties, which differ in the mechanism of fixing active substances and their durability. One of the common methods is to introduce antimicrobial agents directly into the polymer mass during the formation of synthetic fibres. In this case, the components are evenly distributed throughout the polyester, and the formed fibre acquires stable antimicrobial properties, as the active substances can gradually migrate to the surface during use.

Another approach is based on applying an antimicrobial finish to finished fleece fabrics. This method is versatile and can be used for different types of polyester fleece, but its durability largely depends on the interaction between the antimicrobial agent and the fibre. For polyester, which is hydrophobic and has low reactivity, the adhesion of the coating, the type of binding polymers, and the ability of the preparation to remain on the surface during repeated washings play an important role.


The third approach is based on chemically fixing antimicrobial substances by forming covalent or ionic bonds with functional groups on the surface of fibres. This technology is less commonly used for polyester material, as polyester has a limited number of reactive groups [1].

Synthetic antimicrobial agents are highly effective against a wide range of microorganisms and provide long-lasting protection for textile materials. However, their use has significant

drawbacks: insufficient resistance to washing, susceptibility to leaching, and potential toxicological risks. This has led to a growing need for antimicrobial textiles based on safer agents that not only inhibit the growth of microbes on the surface of the material, but also meet modern requirements for safety and sustainability in production [3].

Nature offers a wide variety of natural antimicrobial agents that can be used to impart useful antimicrobial properties to textile materials. The main problem with their use is the complexity of their chemical composition: most biomaterials contain mixtures of several active compounds, and their concentration can vary significantly even in different species of the same plant. In addition, the activity and composition of natural compounds depend on geographical origin, plant age and extraction methods, which makes their bactericidal properties unstable. Another significant challenge is ensuring the availability of these products in large quantities, their extraction, purification and standardisation [1].

In addition to natural agents, biologically active surfactants (bio-surfactants) are of considerable interest to the textile industry. This is confirmed by the growth of the global market for biocides used to inhibit the growth of microorganisms [4]. In 2023, it was estimated at \$7.99 billion and is projected to grow to \$11.70 billion by 2032 at an average annual growth rate of 4.2 %, Fig. 2. The Asia-Pacific region held a leading position in the market with a share of 32.92 %, while in the US, significant growth in demand for biocides is expected due to the increased use of water-based products and the introduction of modern antimicrobial protection technologies.

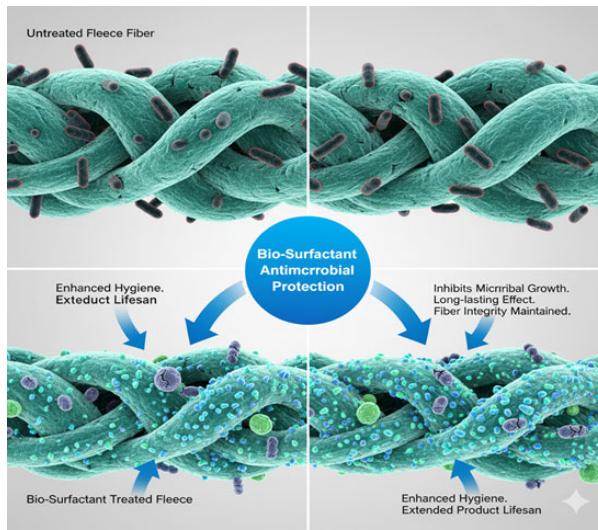


Fig. 2 Forecast for the global market for biocides for textiles in 2023–2032

The effectiveness of the antimicrobial action of bio-surfactants is determined by their ability to disrupt the integrity of bacterial cell membranes, inhibit the growth of pathogenic microorganisms, and provide a long-lasting antimicrobial effect without significantly affecting the physical and mechanical properties of the material [5]. Bio-surfactants can integrate into the fibrous structure of fleece during treatment, creating a stable protective layer that prevents microbial colonization on the fabric surface, Fig. 3.

The use of bio-surfactants in textile materials, especially those that come into contact with the skin or are used in high-humidity conditions, is promising for improving hygienic safety and extending the service life of the products. The combination of high antimicrobial activity with environmental safety and economic feasibility makes bio-surfactants one of the most promising agents for modern fleece finishing.

The key problem in ensuring long-lasting antimicrobial properties of textile materials is insufficient fixation of antimicrobial agents on the surface of fibres. To achieve a stable effect, it is necessary to form strong chemical or associative bonds between the polymer matrix and the antimicrobial reagent, which ensures the coating's resistance to washing and operational influences. In this context, bio-surfactants are of interest as promising modifiers of fleece materials, since their amphiphilic nature promotes effective adsorption on a hydrophobic polyester surface and increases the durability of the antimicrobial effect [6].

Fig. 3 Scheme of bio-surfactant integration into the fibrous structure of fleece material

2. Results and discussion

Antimicrobial treatment of textile materials is an effective way to enhance their hygienic safety and extend their service life. Synthetic antimicrobial agents provide a broad spectrum of activity and long-lasting protection; however, their use is limited by wash-off and potential toxicological risks. Natural agents and bio-surfactants show significant potential as safer and more environmentally friendly alternatives, capable of integrating into the fibrous structure of the material and providing a durable antimicrobial effect without impairing the physical and mechanical properties of the fabric. Modern technological approaches, including incorporation of agents into the polymer melt, surface application, or chemical fixation, help increase the durability of antimicrobial performance. The use of such strategies is particularly relevant for textile products that come into contact with the skin or are used in high-humidity conditions, and confirms the promise of integrating safe antimicrobial agents into contemporary manufacturing.

References

- [1] Shringirishi, R. K., Maity, S.: Sustainable antimicrobial finishes for textiles from natural bio-extracts and conductive polymers. *International Journal of Community Science and Technology*, Vol. 4, No. 1, 2021.
- [2] Prakash, C.: Antimicrobial Finish in Textiles. *Journal of the Textile Association*, Vol. 85, No. 2, 2024.
- [3] Sharma, A., Kumar, V., Singh, R.: Synthetic vs. natural antimicrobial agents for safer textiles: A comparative review. *RSC Advances*, Vol. 14, pp. 12345–12367, 2024.
- [4] Biocides Market Size & Growth 2025 to 2035. Available on-line 27.11.2025.
- [5] Paraska, O., Nehorui, V., Gorban, A., Buratowski, T.: Determining the effectiveness of using a composition of biosurfactants in technologies for antimicrobial treatment of fleece materials for military and civil purposes. *Eastern-European Journal of Enterprise Technologies*, Vol. 4, No. 6(136), pp. 23–34, 2025.
- [6] Ishchenko, O., Sumska, O., Smykalo, K., Feshchuk, Yu., Kuchynska, D.: Antimicrobial approaches for textiles. *Technical Sciences and Technologies*, No. 4 (34), pp. 115–128, 2023.

AN INTEGRATED MODEL FOR ASSESSING THE SUSTAINABILITY OF FASHION INDUSTRY PRODUCTS

Tetiana Ivanishena¹

¹*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

*Corresponding author: ivanishenat@khnmu.edu.ua, Khmelnitskyi, 29008, Ukraine

The integrated sustainability assessment model for fashion industry products combines environmental, economic, social and operational indicators for a comprehensive analysis of products. The model is based on the principles of Life Cycle Assessment, circular economy and responsible production. It allows comparing different types of products, determining their impact throughout the life cycle and formulating recommendations for improving environmental friendliness and production efficiency.

Keywords: sustainable development, fashion industry, integrated sustainability index, circular economy.

1. Introduction

Modern conditions of industrial development are characterized by an increasing need to implement the principles of sustainable development at all stages of the product life cycle. Fashion industry is one of the most resource-intensive and environmentally influential industries, consuming significant amounts of water, energy and chemical reagents, and also generating significant flows of solid and liquid waste. Globally, the fashion industry generates up to 10 % of global CO₂ emissions and about 20 % of wastewater, which makes the tasks of process modernization, the implementation of circular models and environmentally friendly design relevant [1].

In response to this, models for assessing the environmental impact and sustainability of products are being actively developed around the world. However, for the fashion industry of Ukraine, there is still no universal integrated methodology for assessing the sustainability of products that would cover not only environmental, but also social and economic parameters, as well as take into account the peculiarities of the local market, the material and technical base of enterprises, and consumer behavior.

Therefore, the development of an integrated model for assessing the sustainability of fashion industry products is an urgent task that will increase the competitiveness of products, contribute to the greening of the industry, and make it more resilient to global challenges [2].

2. Results and discussion

The aim of the work is to create an integrated model for a comprehensive assessment of the sustainability of fashion industry products based on a combination of environmental, social, and economic criteria, as well as indicators of product quality and durability.

To achieve the goal, the following tasks have been set:

1. To analyze existing international and national approaches to assessing sustainability in the fashion industry sector.

2. Identify key groups of indicators relevant for assessing the sustainability of textile and clothing products.

3. Develop a mathematical model of the integral sustainability index.

4. Adapt the model to the conditions of domestic production.

5. Conduct testing using the example of textile and sewing products of various types.

6. To formulate recommendations for fashion industry enterprises on implementing the model in practice.

Global sustainability assessment practices encompass a range of approaches:

- Life Cycle Assessment (LCA) – life cycle assessment according to ISO 14040/44.

- Social Life Cycle Assessment (S-LCA) – methodology for assessing the social and socioeconomic impacts of a product or service throughout its life cycle, from raw material extraction to disposal.
- The Higg Index is a widely used tool for textiles that assesses environmental and social aspects.
- Carbon Footprint, Water Footprint – assessment of the ecological footprint.
- Cradle-to-Cradle is a circular design model with an assessment of reuse and material safety.
- Material Circularity Indicator (MCI) – an assessment of the degree of circularity of material flows.
- Oeko-Tex, EU Ecolabel, Nordic Swan – product certification tools [3–6].

At the same time, none of the existing models provides full integration of all key parameters necessary for a comprehensive assessment of the sustainability of a specific product sold on the market.

Thus, the integrated model should combine the advantages of existing methodologies and adapt them to the conditions of Ukrainian fashion industry.

On this basis, a four-component structure of the integral product sustainability index is proposed, which includes:

1. Environmental component – indicators of energy consumption, water, waste generation, material toxicity, carbon footprint;
2. Economic component – cost of resources, product service life, material reuse rate;
3. Social component – working conditions, ergonomic properties, consumer safety, local social impact;
4. Resource component – operational properties, ability to be processed.

The proposed model is based on the concept of sustainable development and includes four groups of indicators:

- Environmental indicators – carbon footprint (CO₂-eq); water and energy consumption; toxicity and environmental safety of materials; environmental friendliness of technological processes; the proportion of secondary and biodegradable raw materials.
- Economic indicators – cost of the product; life cycle duration; costs for environmental measures; resource efficiency of production.
- Social indicators – occupational safety in production; supplier responsibility; working conditions and supply chain transparency; social impact of the brand.
- Quality and performance indicators – product durability; wear resistance; maintainability; possibility of recycling.

For quantitative assessment, a system of normalization of indicators with subsequent calculation of the integral sustainability index according to the formula:

The overall sustainability index S is calculated as the weighted sum of the normalized indicators:

$$S = \sum_{i=1}^i k_i \cdot I_i,$$

where:

I_i – normalized indicator;

k_i – weight coefficient determined by the method of expert assessments.

i – number of indicators.

For the fashion industry sector, the recommended weighting factors are:

- environmental aspects – 0.40;
- economic – 0.25;

- social – 0.20;
- qualitative – 0.15.

The weighting factors were determined by an expert survey method, taking into account the priorities of the European Green Deal and the Sustainable Development Goals (SDG 9, 12, 13).

This reflects the priority given to environmental challenges for the industry and the importance of product durability.

To verify the model's performance, a test evaluation of such product types as a cotton T-shirt, polyester sportswear, clothing made of mixed fibers, and an eco-product made of recycled materials (rPET) was conducted.

The main results of the testing showed that:

1. Organic cotton products have high environmental performance, but are inferior in durability.
2. Polyester products demonstrate better durability, but have a larger carbon and energy footprint.
3. Blended fabrics are problematic from a recycling perspective, which reduces their integral sustainability index.
4. rPET products show the highest overall index due to significantly lower resource consumption and high durability.

The results obtained confirmed the practicality of the model and its sensitivity to the balance of key criteria.

A universal integrated model is proposed, which combines 4 blocks of indicators (ecological, economic, social and resource). For the first time, a standardized system for assessing the sustainability of products has been created for the fashion industry of Ukraine, which allows comparing products of different types. An expert-analytical approach has been applied to determine weighting factors. The model is adapted to the conditions of the industry, including local materials, technologies and market features.

The integrated model can be used by fashion industry enterprises to ecologize production, by designers and technologists to create environmentally friendly products, by educational and scientific institutions as a tool for training and analysis, by certification bodies to assess product sustainability, and by brands as an element of responsible consumption marketing.

The introduction of the model will allow enterprises to optimize material and energy flows, reduce environmental impact, improve product quality and durability, and gain competitive advantages in domestic and foreign markets.

The developed model can be used to create digital eco-passports for products, improve environmental management systems, and certify products according to European standards.

Thus, the integrated sustainability assessment model contributes to the implementation of the circular economy concept, increasing resource efficiency, reducing environmental risks, and strengthening the positions of Ukrainian producers in the European space of sustainable development.

References

- [1] Islam, M., Perry, P., & Gill, S.: Mapping environmentally sustainable practices in textiles, apparel and fashion industries: a systematic literature review. *Journal of Fashion Marketing and Management*, Vol. 25, No. 2, pp. 331–353, 2020.
- [2] Gupta, H., Kumar, A., & Wasan, P.: Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. *Journal of Cleaner Production*, Vol. 295, pp. 126–253, 2021.
- [3] Luo, Y., Song, K., Ding, X., & Wu, X.: Environmental sustainability of textiles and apparel: A review of evaluation methods. *Environmental Impact Assessment Review*, Vol. 295, pp. 486–497, 2021.

[4] Edirisinghe, L., De Alwis, A., & Wijayasundara, M.: Sustainable Circular Practices in the Textile Product Life Cycle: A Comprehensive Approach to Environmental Impact Mitigation. *Environmental Challenges*, Vol. 16, 2024.

[5] Fidan, F., Aydogan, E., & Uzal, N.: Comprehensive analysis of social subcategories throughout life cycle assessment approach for the textile industry. *The International Journal of Life Cycle Assessment*, Vol. 30, pp. 1464–1479, 2024.

[6] Pacana, A., Siwiec, D., Ulewicz, R., & Ulewicz, M.: A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development. *Sustainability*, 2024.

IMPROVING TEXTILE HYGIENE USING BIO-SURFACTANT ANTIMICROBIAL COMPOSITIONS

Olga Paraska^{1*}, Jozef Bronek², Miroslaw Bonek³

¹*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

²*University of Zilina, Zilina, Slovakia*

³*Silesian University of Technology, Gliwice, Poland*

*Corresponding author: olgaparaska@khnmu.edu.ua, Khmelnitskyi, 29008, Ukraine

This research considers the antimicrobial effect of the new composition for treatment of textile materials on the basis of bio-surfactants. The minimum bacteriostatic, fungistatic, bactericidal and fungicidal concentrations of the elaborated composition were determined. The influence of different fiber and fabric samples (cotton, polyester fiber and their mixtures) on the biofilm of cultures of microorganisms was established. Zones of growth of retardation of cultures and the possibility of retrieval of culture of autochthonous obligate representatives of human microflora skin after their removal from the surface with the investigated flap were determined.

Keywords: antimicrobial treatment, bio-surfactants, textile materials, bacteriostatic concentration, fungistatic concentration, bactericidal activity, fungicidal activity.

1. Introduction

The bio-surfactant-based antimicrobial composition significantly enhances the hygienic properties of textile materials. It demonstrates strong bacteriostatic, fungistatic, bactericidal, and fungicidal activity across cotton, polyester, and blended fabrics. The treatment effectively suppresses microbial growth and biofilm formation while preventing recolonization by skin microflora after contact [1, 2]. Overall, the composition provides a stable, long-lasting, and environmentally safe method for improving textile hygiene. The screening study was performed on the following test cultures of reference microorganisms with different microbial loads: *S. aureus* ATCC 25923 (microbial load – 10^5); *C. albicans* ATCC 885-653 (microbial load – 10^3); *E. coli* ATCC 25922 (microbial load – 10^5).

Sensitivity of the test cultures to the developed composition was established by the method of double serial dilutions in sterile polystyrene tablets. A working inoculum of microorganisms was prepared from a 24-hour bacterial culture (105 CFU/ml) and a 48-hour culture of the yeast *Candida* (103 CFU/ml), the concentration of microorganisms was determined according to the McFarland standard [2].

The next stage of the study was the determination of the effect of material samples of cotton, polyester fiber and their mixtures on subsequent reference and clinical strains of cultures of microorganisms with different microbial loads by diffusion.

Determination of the effect of the components of the compositions on biofilm cultures of microorganisms was carried out as follows: we placed a disk of sterile filter paper on a Petri dish

with a test culture lawn of each strain of the microorganism and applied 0.1 ml of test composition on this disk. The results were calculated after cultivation under optimal conditions and time for each crop by measuring the diameter of the growth retardation zones around the disc on the lawn.

The control was carried out by checking the sterility of the obtained solutions and material samples, the viability of reference and clinical strains of cultures of microorganisms and the quality of nutrient media.

2. Results and discussion

A microbiological study on the sensitivity of reference and clinical strains of microorganisms of the composition of the following composition (mol, %) [2]: cocamide DEA from 60 to 70 % and a derivative of Biguanidine from 30 to 40% was conducted.

The study of the spectrum of antimicrobial properties of the composition cocamide DEA / derivative of Biguanidine ($C = 2.5 \text{ g/l}$) showed the following result [2, 3]. The minimum bacteriostatic concentration was in dilutions from 1:32 to 1:128 for cultures of *S. aureus* strains, and the cidal effect was observed in the range from 1:16 to 1:64. The minimum bacteriostatic concentration was displayed in dilutions from 1:16 to 1:64 for *E. coli*, and the minimum bacteriocidal concentration was in the range from 1: 8 to 1:32. Antifungal properties were determined in dilutions from 1:16 to 1:128 (the minimum fungistatic concentration) and from 1:8 to 1:64 (minimum fungicidal concentration) for yeast-like fungi of the genus *Candida*.

It was found that the use of a composition on the basis of bio-surfactants during washing, wet cleaning and finishing with special purpose products (for military, athletes, etc.) and home textiles restores the microflora of the skin (*P. freudenreichii* culture) to $10^4\text{--}10^5 \text{ cells/ml}$ after 48 hours of fabric sample exposure in the sterility control environment and enhances the ecological safety of the processes of garment treatment [2, 4].

3. Conclusion

The results of research show the retardation of growth of cultures of *S. aureus*, *C. albicans*, *S. epidermidis*, *P. freudenreichii* and indicate the promotion of treated materials to decontamination of infectious agents from the skin of patients with chronic dermatoses. In addition, properly treated textiles can help to restore the indigenous obligate microflora of the skin.

The use of fabrics and textiles treated with compositions containing bio-surfactants is promising for a comprehensive study of their application as an element of skin care of patients with chronic and severe dermatoses and infectious agents that colonize the skin in the pathogenesis.

References

- [1] Prakash, C.: Antimicrobial Finish in Textiles. Journal of the Textile Association, Vol. 85, No. 2, 2024.
- [2] Paraska, O., Rak, T., Rotar, D., Radek, N. (2019). The research on the effect of compositions of ecologically safe substances on the hygienic properties of textile products. Eastern-European Journal of Enterprise Technologies, № 1, 39 – 55.
- [3] Paraska, O., Rak, T., Karvan S. (2019). The composition for washing and finishing of household textile garments. Patent 133667 Ukraine.
- [4] Giagnorio, M., Amelio A., Grüttner, H., Tiraferri, A. (2017). Environmental impacts of detergents and benefits of their recovery in the laundering industry. Journal of Cleaner Production, Vol. 154, 593–601.

INNOVATIVE APPROACH TO FIBER FEEDING INTO THE MOLD DURING FOOTWEAR SOLE MANUFACTURING

Oleg Synyuk, Oleksandr Hedz, Yurii Yunas

Khmelnytskyi National University, Khmelnytskyi, Ukraine

Corresponding author: unas_1@ukr.net

Khmelnytskyi, 29000, Ukraine

The paper presents a combined engineering and materials science approach to the development of an automated fiber-feeding system for polymer footwear sole molding. The proposed solution enhances the stability of fiber dosing, ensures more uniform spatial distribution within the mold, and improves the structural integrity of polymer-fiber composites. Experimental results demonstrate increased homogeneity, higher mechanical strength, and improved durability of the molded soles.

Keywords: fiber feeding, polymer composites, footwear soles, automation, material structure.

1. Introduction

In modern footwear manufacturing, one of the key areas of technological development is the use of polymer composite materials modified with dispersed fibers to enhance the performance characteristics of molded products. The formation of a structurally uniform polymer-fiber material during footwear sole molding directly depends on the accuracy and stability of fiber feeding into the mold. Uneven distribution of the filler leads to the formation of weak zones, reduced strength, and non-uniform wear resistance. In traditional technological schemes, fiber feeding is performed manually or using semi-mechanized devices, which does not ensure the required level of process control and repeatability [3]. Therefore, there is a clear need to implement automated systems capable of providing a stable mass flow of fibers, precise dosing, and uniform introduction of the filler into the molding cavity.

Recent advancements in polymer processing technologies highlight the importance of controlled filler incorporation for improving composite reliability. As footwear soles operate under complex mechanical loads, including bending, compression, torsion, and abrasion, the consistency of fiber distribution becomes a critical factor influencing long-term durability. Automated fiber-feeding systems have demonstrated significant potential in minimizing human-related errors and ensuring stable production parameters under varying industrial conditions. Moreover, the integration of smart sensors and microprocessor-based control units provides real-time monitoring of fiber concentration and flow stability, enabling more accurate process adjustments [1, 3]. The use of vibration-assisted and pneumatic transport mechanisms has also shown to be effective in preventing agglomeration and improving dispersion uniformity. Such technological improvements address long-standing limitations associated with manual feeding techniques and contribute to better reproducibility of composite properties. In addition, the development of adaptive control algorithms supports flexible adjustment of feeding regimes depending on fiber type, polymer viscosity, and molding conditions. These innovations collectively establish a strong foundation for enhancing the structural and functional performance of polymer-fiber composites used in the footwear industry.

2. Results and discussion

The proposed automated fiber-feeding system is based on the integration of three functional modules: a stabilized feeding mechanism, a sensor-based subsystem for flow parameter monitoring, and a module for uniform fiber dispersion within the molding cavity. This comprehensive approach ensures continuity and controllability of the technological process at all stages. The stabilized feeding mechanism includes a dosing unit with adjustable feeding frequency, which prevents sudden fluctuations in mass flow and maintains operational stability. As a result, the issue of

inconsistent fiber supply – commonly observed in traditional mechanical systems – is effectively eliminated.

A key structural feature of the system is the use of vibration–pneumatic transportation, which enables fiber movement in a pseudo-fluidized state. This regime helps prevent fiber agglomeration, minimizes the formation of clusters, and ensures a more predictable trajectory of the dispersed filler. Control over the intensity of the pneumatic flow allows the transportation speed to be adjusted according to the characteristics of fibers of different types, making the system universal for various polymer compositions [2]. The optimized geometry of the pneumatic channel reduces turbulence and ensures air-flow stability, which is essential for achieving uniform fiber distribution. The sensor subsystem, which includes mass flow sensors, pressure sensors, fiber concentration detectors, and temperature sensors, enables multi-channel real-time control of the technological process [1]. The acquired data are transmitted to a microprocessor control unit, which regulates feeding intensity, vibration frequency, and pneumatic transport parameters. This implements the principle of adaptive control, allowing the system to compensate for external disturbances and maintain the required process parameters even under changing production conditions. High synchronization accuracy between fiber feeding and polymer injection significantly enhances the uniformity of the polymer–fiber structure formation in the mold.

From a materials science perspective, the spatial uniformity of dispersed fiber distribution plays a crucial role in determining the mechanical and operational properties of the composite. When the polymer matrix is filled unevenly, local stress concentrations occur, interphase adhesion is disrupted, and regions with insufficient fiber content exhibit lower strength and reduced resistance to impact loads. The automated system enables the formation of a structure with controlled fiber orientation, which is especially important for footwear soles subjected to complex mechanical influences such as bending, compression, torsion, and abrasive wear [2, 3]. The results of laboratory tests confirm the effectiveness of the proposed engineering solutions. The variation in mass flow decreased by 35–40 % compared to manual methods, indicating a significant reduction in feeding instability. The uniformity of mold filling increased by more than 25 %, resulting in improved homogeneity of the composite structure. Mechanical testing of the molded polymer–fiber samples showed a 10–15 % increase in tensile strength, enhanced abrasion resistance, and a decrease in the number of structural defects such as pores, microcracks, and zones of insufficient interphase adhesion.

These findings demonstrate that the implementation of the automated fiber-feeding system is an effective tool for improving the accuracy and repeatability of footwear sole molding processes. Importantly, the proposed approach not only enhances the structural uniformity of the composite but also creates favorable conditions for optimizing subsequent processing stages and increasing the long-term stability of the operational properties of the finished products.

3. Conclusions

The combination of materials science principles of polymer composite formation with modern automation tools for technological processes opens new opportunities for improving the quality and technological level of footwear materials. The developed automated fiber-feeding system demonstrated the ability to provide stable dosing and controlled delivery of the dispersed filler, which is a key condition for forming a uniform polymer–fiber structure. The results of the conducted tests showed that the proposed system significantly reduces fluctuations in fiber mass flow, increases the uniformity of mold filling, and improves the quality indicators of the resulting composites. Compared with traditional technological methods, the automation of fiber feeding ensures an increase in mechanical strength, enhanced resistance to multi-cycle loading, and a reduction in structural defects in molded products. This indicates a substantial improvement in the operational properties and durability of footwear components.

From an engineering and technological perspective, the system demonstrated high efficiency in synchronizing fiber feeding with the polymer injection stage, which contributes to reducing

technological losses and improving process repeatability. These results confirm the feasibility of implementing the automated equipment in industrial production lines for footwear soles, as this reduces dependence on the human factor, optimizes raw material consumption, and ensures stable product quality. The potential of the proposed system is strengthened by its versatility for different types of polymer composite materials and its scalability for various production capacities. Further research should focus on improving control algorithms, developing additional adaptive sensor modules, and deepening the study of the influence of fiber feeding parameters on the microstructure of composites. An important direction also involves the integration of digital intelligent systems and machine learning tools for predicting material properties and automatically optimizing molding modes.

Thus, the proposed automated fiber-feeding system is a technologically sound, effective, and promising solution for modernizing the production of polymer-composite footwear materials. It meets current innovation requirements and may serve as a foundation for creating new generations of high-performance composites with predictable properties.

References

- [1] Gupta, P. K., Kumar, R., Singh, S. K.: Fiber-reinforced polymer composites: materials, manufacturing, and engineering applications. *Materials Today: Proceedings*, Vol. 28, pp. 2462–2468, 2020.
- [2] Almajid, A., Umer, R., Bougerara, H.: Manufacturing and characterization of fiber-filled polymer composites for structural applications. *Journal of Reinforced Plastics and Composites*, Vol. 39(5–6), pp. 217–231, 2020.
- [3] Móczó, J., Pukánszky, B.: Polymer micro-and nanocomposites: structure, interactions, and properties. *Journal of Industrial and Engineering Chemistry*, Vol. 14(5), pp. 535–563, 2019.

АНАЛІТИЧНЕ ЗАБЕЗПЕЧЕННЯ ЯКОСТІ ПИТНОЇ ВОДИ: ПРОБЛЕМИ І ПЕРСПЕКТИВИ ДЛЯ УКРАЇНИ

Дмитро Андрусяк

Кам'янець-Подільський національний університет імені Івана Огієнка

*Corresponding author: kampodil25@gmail.com, Kamianets-Podilskyi, 32301, Ukraine

The current state of water quality monitoring for human consumption in EU countries is examined in this article. The realities of conducting analytical chemical monitoring of pollutants in water bodies in Ukraine are demonstrated. The main obstacles preventing the implementation of European water quality monitoring standards in Ukraine can be addressed with financial and organizational assistance from European countries during the post-war reconstruction period.

Keywords: drinking water, quality control, pollutants.

1. Вступ

Аналітичний контроль питних вод є обов'язковою складовою безпеки вживання, без якого неможливо судити про їхню якісну характеристику. При отриманні питної води для вибору оптимального методу обробки необхідна інформація про забруднюючі речовини, їх кількість, властивості, і що важливо – розподіл у вихідній природній воді у місцях питного водозабору. Ця інформація базується на результатах аналізу значної номенклатури різних речовин, у тому числі тих, що знаходяться в малих та надмалих концентраціях.

Європейський Союз періодично розширює та посилює контроль якості води, включає нові забруднюючі речовини та підвищує вимоги до моніторингу. Контроль якості ґрунтуються на регулярному вимірюванні базових показників, що відображають ступінь забруднення та тип

речовини, що підлягає видаленню. Разом із обов'язковими параметрами, без яких оцінка якості є некоректною, у практиці європейських країн встановлені спеціальні заходи контролю для нових забруднюючих речовин, що зі стоками потрапляють у водні об'єкти, часто чинячи на ней серйозний негативний вплив.

2. Результати і обговорення

Дослідження, проведені у країнах Європейського союзу, а також у США, Канаді та Бразилії вказують на присутність у воді понад 80 фармацевтичних речовин (Wontorska 2018; Almazrouei et al. 2023) [1]. Щороку збільшується присутність гормонів у водних ресурсах та їх вплив на довкілля та здоров'я населення (Ojogoro et al., 2021) [2]. Лікарські препарати та їх метаболіти становлять небезпеку для біоти, здоров'я та навколошнього середовища при потрапляння у водні об'єкти (Kanama et al. 2018; Barboza et al. 2019; Lima Moraes et al. 2019) [3].

Тривалий вплив навіть низьких концентрацій фармацевтичних препаратів здійснює токсичний вплив на наземні та водні організми, створює загрозу передачі людині або тваринам по харчовому ланцюгу (Kanama et al., 2018) [3].

Необхідним вважається контроль перфторованої речовини ПФАС (20 перфторалкильних речовин, стійких біоакумулятивних забруднювачів), бісфенол А (речовина, що порушує роботу ендокринної системи, що широко використовується у виробництві пластику), а також побічних продуктів дезінфекції води. Водночас є труднощі у визначенні фталатів. Їхня складна хімічна структура та низька концентрація ускладнюють аналіз, розділення та ідентифікацію навіть за допомогою сучасних методів. Контроль якості стає з фінансової точки зору високовитратним.

В Італії набув чинності новий Законодавчий декрет 18/2023 про впровадження Директиви (ЄС) 2020/2184, що регулює якість води, призначеної для споживання людиною [4]. Відповідно до Законодавчого указу 18/2023, компетентні органи зобов'язані впроваджувати адекватні програми постійного моніторингу речовин, включених до контрольного списку, оновлюваного Європейською комісією, що включає мікропластик, фармацевтичні препарати та речовини, що порушують роботу ендокринної системи. Хімічний аналіз води включає перевірку за 28 параметрами, що стосуються небажаних та токсичних елементів, для яких встановлені обов'язкові гранично допустимі концентрації та 21 індикаторним параметром, що відноситься до характеризуючих елементів, з рекомендованими значеннями, які не слід перевищувати. Документ наголошує, що аналіз параметрів питної води має проводитись лише сертифікованими лабораторіями, відповідно оснащеними.

Іспанія запроваджує національний список спостереження за новими забруднювачами, які потребують особливої уваги через їх потенційний вплив на здоров'я населення. 17 β -естрадіол (17 β -Estradiol) і нонілфенол (Nonilfenol) є ендокринними руйнівниками, які можуть впливати на ендокринну систему людини. Азитроміцин (Azitromicin) і диклофенак (Diclofenac) – два лікарські препарати, що найчастіше зустрічаються у природній воді [5, 6].

Мікропластик також відноситься до нових забруднювачів. «Ці частинки, чи то у формі більшого, чи дрібнішого пластику, мають далекосяжні негативні наслідки для екосистем, біоти та довкілля, а також для економіки та здоров'я людини» говорить один із документів Європарламенту [7].

Розширення списку речовин аналітичного контролю потребує фінансового забезпечення для переоснащення лабораторій, закупівлі нових засобів вимірювальної техніки.

Окрім витрат на купівлю засобів вимірювання, лабораторії повинні враховувати необхідність акредитації лабораторій на право проведення вимірювань того чи іншого показника якості води. Головними з них є вимоги щодо оснащення необхідним технічним обладнанням, вимірювальними та допоміжними засобами та кваліфікацією персоналу. Також необхідні значні кошти для:

– ліцензії на програмне забезпечення для сучасних типів аналізу;

– калібрування та технічне обслуговування для забезпечення точної та довготривалої роботи (вимірювальні засоби, які використовуються для проведення низки досліджень певних конкретних параметрів, повинні мати свідоцтва про калібрування та регулярно піддаватися йому);

– витрати на навчання персоналу.

Вартість акредитації залежить від кількості вимірюваних показників та методів випробувань – чим більша кількість, тим більша вартість. Тому вартість може коливатися, причому дуже суттєво.

Наскільки серйозними є ці виклики можна передбачити на прикладі контролю мікропластика у воді. Найбільш поширеними методами ідентифікації частинок пластику є спектроскопічні методи (ІЧ-спектроскопія та романівська мікроспектроскопія) або методи термічного розкладання [8, 9]. Лише вартість портативного романівського спектрометра з нижчою роздільною здатністю, ніж настільні моделі чи мікроскопи, становить 10–50 тис. дол. США.

Іншою перешкодою для досягнення необхідного контролю за якістю питної води в Україні є масштабна військова агресія проти України, яка спричинила руйнування економіки та критичної інфраструктури, систем водопостачання та водовідведення, створила брак фінансування та кадрів, потенціалу та ресурсів лабораторій для впровадження європейських норм та стандартів якості води, скорочення програм моніторингу. Як загальний наслідок – невиконання планів водної євроінтеграції з впровадженням директив ЄС щодо питної води [10].

Звіт про стан довкілля Хмельницької області за результатами моніторингових спостережень у вересні 2025 року [11] якості води р. Дністер у межах насосної станції питного водозабору м. Кам'янець-Подільського у вересні 2025 р. представлена лише 8 показниками (водневий показник pH, БСК5, ХСК, фосфор загальний, фосфор ортофосфатів, хлориди, сульфати, залізо загальне).

Національна доповідь про якість питної води та стан питного водопостачання та водовідведення в Україні у 2023 р. стверджує: «р. Дністер (питні водозабори міст Кам'янець-Подільський, Чернівці, Одеса): органічні та біогенні показники знаходилися в межах норми», «Вміст виявлених показників пестицидів, поліароматичних вуглеводнів та летких органічних сполук не перевищував екологічних нормативів якості» [12].

Основним джерелом інформації про якість питної води за 12–18 фізико-хімічними показниками наразі є водоканали, які з різною періодичністю (раз на місяць–квартал) надають дані на своїх вебсторінках» [10].

Сучасний стан моніторингу якості води (відбір проб, аналіз та документування даних), що використовується як питна, пов'язаний з адміністративним і фінансовим навантаженням, тому слід застосувати дії, які дозволяють розробити методологію впровадження європейських стандартів в Україні, яка є співрозмірною ситуацією, що склалася, доцільною та економічно реалізованою.

Необхідна адаптація України до нових наукових даних та забезпечення безпеки громадської охорони здоров'я у сфері споживання якісної питної води. Але водночас існує велика потреба у фінансовій та організаційній допомозі з боку країн, які успішно реалізували сучасний контроль якості питної води.

Список використаних джерел

- [1] Grzegorzek M., Wartalska K., Kowalik R.. Occurrence and sources of hormones in water resources-environmental and health impact. Environ. Sc.i Pollut. Re.s Int. 2024 Jun; 31(26): 37907-37922. doi: 10.1007/s11356-024-33713-z. URL: <https://pubmed.ncbi.nlm.nih.gov/38772997/>
- [2] Ojogoro J. O., Scrimshaw M. D., Sumpter J. P. (2021) Steroid hormones in the aquatic environment. Sci. Total. Environ. 792. URL: <https://doi.org/10.1016/j.scitotenv.2021.148306>

[3] Kanama K. M. et al. (2018) Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province, South Africa. *J. Toxicol.* 2018: 10.1155/2018/3751930 URL: <https://doi.org/10.1155/2018/3751930>.

[4] Decreto Legislativo 18/2023 di attuazione della URL: <https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2023-01-30;18~art4>

[5] Real Decreto 3/2023, de 10 de enero, por el que se establecen los criterios técnicos-sanitarios de la calidad del agua de consumo, su control y suministro. URL: https://www.sanidad.gob.es/areas/sanidadAmbiental/calidadAguas/aguasConsumoHumano/publicaciones/docs/2023_GUAIA_RD_3_2023.pdf

[6] Directiva (UE) 2020/2184, relativa a la calidad de las aguas destinadas al consumo humano. URL: <https://www.boe.es/buscar/doc.php?id=DOUE-L-2020-81947>

[7] The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and national measures. URL: [https://www.europarl.europa.eu/RegData/etudes/STUD/2020/658279/IPOL_STU\(2020\)658279_EN.pdf](https://www.europarl.europa.eu/RegData/etudes/STUD/2020/658279/IPOL_STU(2020)658279_EN.pdf)

[8] Schymanski D., et al. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: minimum requirements and best practice guidelines. *Anal. Bioanal. Chem.* 2021; 413(24):5969–94. URL: <https://doi.org/10.1007/s00216-021-03498-y>

[9] Tamminga M., Hengstmann E., Fischer E.K. Nile red staining as a subsidiary method for microplastic quantification: A comparison of three solvents and factors influencing application reliability. *J. Earth Sci. Environ. Stud.* 2017; 2(2). URL: <https://doi.org/10.15436/jeses.2.2.1>

[10] Короткий звіт щодо прогресу впровадження Протоколу про воду і здоров'я в Україні у 2022 – 2024 р.р. URL: <https://mepr.gov.ua/uploads/2025/05>

[11] Стан довкілля Хмельницької області за результатами моніторингових спостережень. URL: https://www.adm-km.gov.ua/?page_id=1625

[12] Нац. доповідь про якість питної води та стан питного водопостачання та водовідведення в Україні у 2023 р. URL: <https://mindev.gov.ua/storage/app/sites/1/uploaded-files/nacionalna-dopovid-pro-iakist-pitnoyi-vodi-ta-stan-pitnogo-vodopostacannia-ta-vodovidvedennia-v-ukrayini-u-2023-r.pdf>

ВИВЧЕННЯ НОВИХ ФОРМ МОДИФІКОВАНОГО ЗАКАРПАТСЬКОГО ЦЕОЛІТУ ЯК ОСНОВИ ПОЛІМЕРНИХ НАНОКОМПОЗИЦІЙ ДЛЯ СТВОРЕННЯ АНТИБАКТЕРІАЛЬНИХ ТЕКСТИЛЬНИХ ТА ШКІРЯНИХ МАТЕРІАЛІВ

Оксана Козарь¹, Юрій Жигуц², Віталій Демченко¹

¹Мукачівський державний університет

²ДВНЗ «Ужгородський національний університет»

*Corresponding author: okozar68@gmail.com, Mukachevo, 89600, Ukraine

The article considers new forms of modified Transcarpathian zeolite as the basis of polymer nanocomposites for the creation of antibacterial textile and leather materials. The mechanisms of the antibacterial effect of nanocomposites are determined, the physicomechanical and hygienic properties of the compositions are analyzed. The prospects for the introduction of naturally-oriented compositions using the Ukrainian raw material base are substantiated.

Keywords: Transcarpathian zeolite, modification, antibacterial properties, nanocomposite structures, textile and leather materials.

1. Вступ

Військова діяльність на території України значно посилила потребу в ефективних, безпечних та недорогих засобах дезінфекції поверхонь у польових умовах. Наразі дезінфекція поверхонь проводиться переважно з використанням хімічних речовин, таких як

хлорні сполуки, та, меншою мірою, органічні та пероксидні сполуки [1]. Однак такі традиційні засоби стерилізації мають численні недоліки, зокрема, під час хімічної взаємодії реагентів дезінфікуючих засобів з органічними сполуками, що присутні на поверхнях, або з органічними матеріалами поверхонь, можуть утворюватися токсичні речовини.

Сучасні вимоги військової та екстремальної медицини передбачають швидке впровадження нових матеріалів із комплексними властивостями. Серед них особливе місце займають антибактеріальні текстильні та шкіряні матеріали, що можуть служити основою для перев'язувальних засобів, елементів амуніції, підкладок, устілок тощо. Закарпатський клиноптилоліт є однією з найбільш перспективних мінеральних сировинних баз України для створення наноструктурних композиційних матеріалів. Поєднання високої пористості, іонообмінної здатності, стабільності кристалічної решітки та можливості наномодифікації робить його ключовою платформою для новітніх матеріалів у галузях медицини, військового спорядження, систем індивідуального захисту та біотехнологій. Сучасні наукові розробки спрямовані на створення матеріалів з пролонгованою антибактеріальною, сорбційною, каталітичною та бар'єрною дією.

В останні роки спостерігається зростаючий інтерес до досліджень антимікробних, каталітических та сорбційних властивостей твердих наноматеріалів, зокрема природних цеолітів, які можуть бути використані у складі дезінфікуючих та дегазаційних засобів. Цеолітні композиції, зокрема комплекси «клиноптилоліт–Ag⁺», були запропоновані для знешкодження бойових отруйних хімічних речовин нервово-паралітичної дії (V–X, зарин) та бактеріологічних агентів [1–4]. Підвищення ефективності матеріалів на основі цеолітів з точки зору біологічної активності може бути досягнуто за допомогою термічної та хімічної обробки, заміщення катіонів в обмінному комплексі, легування катіонами важких металів або механохімічної обробки [1, 3, 5].

2. Матеріали та методи

Основою для формування полімерних композитів є модифікований цеолітовий порошок: H-форма, Ag-цеоліт та Ag/Cu-цеоліт. Модифікація здійснюється йонообмінними, відновними або механохімічними (МХО) методами, які дозволяють рівномірно ввести наночастинки металів у порову структуру мінералу. Для інтеграції у текстиль і шкіру застосовуються методи просочення, нанесення полімерних дисперсій, залучення зв'язуючих (латекси, поліуретани, силіконові композиції).

Для інтеграції закарпатського цеоліту в текстильні й шкіряні матеріали найчастіше розглядають такі підходи:

- введення модифікованого цеолітового порошку (H-форма, Ag-цеоліт, Ag/Cu-цеоліт) у полімерне зв'язуюче, яким просочують тканини або наносять на їхню поверхню у вигляді тонкого покриття. Це дозволяє сформувати пористий, дихаючий шар з антибактеріальною активністю;
- фіксація частинок цеоліту в структурі текстильного волокна або шкіряної основи за допомогою зв'язуючих (латекси, поліуретани, силіконові композиції), що забезпечує стійкість до прання, механічного зносу та дії вологи.

3. Результати та обговорення

У низці робіт українських та зарубіжних дослідників показано, що модифікація закарпатського клиноптилоліту йонами та наночастинками срібла, а також інших перехідних металів (Ag, Cu, Ni, Mn тощо) надає матеріалу виражених антибактеріальних властивостей. Зокрема, H-форма клиноптилоліту та композити типу цеоліт–Ag і цеоліт–Ag/Cu демонструють значне пригнічення росту грампозитивних і грамнегативних бактерій (*Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli* та ін.). Паралельно зберігаються високі сорбційні характеристики щодо води та іонів металів [2–4].

Природні цеоліти Закарпаття представлені переважно кліноптилолітом – алюмосилікатним мінералом з відкритою мікропористою структурою. Каркас мінералу складається з тетраедрів SiO_4 та AlO_4 , організованих у канали та пори діаметром 3–10 Å, що забезпечує:

- високу питому поверхню (80–150 $\text{m}^2/\text{г}$), що сприяє адсорбції води, метаболітів та мікробних токсинів;
- іоннообмінну здатність – здатність заміщувати іони Na^+ , K^+ , Ca^{2+} , Mg^{2+} на іони важких металів або антибактеріальних компонентів;
- хімічну інертність, стійкість до підвищених температур і біологічної деградації;
- каталітичну активність, яка дозволяє нейтралізувати продукти розкладу органічних речовин;
- стійкість до патогенних середовищ, включно з бактеріальними ферментами.

Дослідження показують, що кліноптилоліт закарпатського родовища має високу кристалічність, низький вміст домішок та стабільну структуру, що є критично важливим для медичних застосувань [3].

У публікаціях останніх років [1–5] експериментально доведено ефективність закарпатського клиноптилоліту, модифікованого Ag^+ та іншими металами, як антибактеріального наповнювача. Окремі статті присвячені розробці композитних мікрочастинок та порошків, які можуть бути безпосередньо інтегровані в полімерні зв'язуючі для текстильних та шкіряних матеріалів. Хоча більшість робіт сформульовані в загальному біомедичному або екологічному контексті (фільтри, антисептичні композиції), описані в них підходи повністю придатні для створення медичних текстильних та шкіряних матеріалів для військової справи.

Антибактеріальний ефект композицій на основі закарпатського цеоліту переважно зумовлений:

- повільним вивільненням іонів Ag^+ та/або Cu^{2+} з пор цеоліту в контактне середовище (поверхня рани, волога тканина), що ушкоджують клітинні стінки та ферментні системи мікроорганізмів;
- сорбцією ексудату, токсинів і продуктів метаболізму бактерій, що зменшує локальне навантаження на тканини та сприяє очищенню рани;
- зміною рН мікрооточення завдяки іонообмінним процесам у цеоліті, що може бути несприятливим для розвитку патогенних мікроорганізмів [2].

Тестування фізико-механічних та гігієнічних властивостей композицій показує, що введення 5–8 % цеоліту забезпечує [5]:

- зниження бактеріального обсіменіння на 95–99 %;
- підвищення водопоглинання на 25–40 %;
- збільшення повітропроникності тканини на 15–20 %;
- зменшення запаху на 60–75 %;
- стабільність антибактеріального ефекту при температурі до 150 °C.

Матеріали є абсолютно безпечними, не викликають подразнення шкіри та алергічних реакцій.

Потенційні медичні застосування у військовій та екстремальній медицині

З огляду на наведені властивості, цеоліт-вмісні текстильні та шкіряні композити мають перспективу застосування у таких виробах:

- пов'язки та серветки для лікування ран і опіків із поєднанням сорбційної, гемостатичної та антибактеріальної дії;
- елементи військової форми, підкладки шоломів, устілки взуття і внутрішні поверхні амуніції з антибактеріальним покриттям для профілактики дерматологічних уражень;
- одноразові та багаторазові медичні вироби (фільтрувальні маски, екрані, чохли для обладнання), де поєднуються механічний захист і пригнічення росту мікрофлори.

Використання цеоліту як наповнювача у композиціях для текстильних та шкіряних матеріалів, де мінеральна фаза одночасно виконує зміцнюючу, сорбційну та антибактеріальну функції.

Висновки

Закарпатський цеоліт є перспективною природною сировиною для створення антибактеріальних композиційних матеріалів завдяки своїй пористій структурі, іоннообмінним властивостям та біосумісності. Модифікований цеолітовий порошок (Н-форма, Ag-цеоліт та Ag/Сu-цеоліт) є ефективною мінеральною основою для полімерних нанокомпозитів, що поєднують антибактеріальні, сорбційні та структурні властивості. Подальший розвиток технологій передбачає оптимізацію співвідношення полімер/мінерал, дослідження довготривалої стабільності і випробування в умовах, наблизених до реальних військово- медичних сценаріїв. Використання української мінеральної сировини забезпечує економічну доступність та сприяє імпортозаміщенню в галузі медичних матеріалів. Перспективами подальших досліджень є наномодифікація цеоліту, створення багатошарових композитів і тестування у клінічних умовах.

Список використаних джерел

- [1] Vasylechko, V., Znak, Z., & Manko, N. (2023). Antibacterial properties of modified Transcarpathian clinoptilolite. *Journal of Materials Science*, 58 (4), 1125–1138.
- [2] Gicheva G., Panayotova M., Gemishev O., Kulinich S.A., Mintcheva N. «Silver Nanoparticles@Zeolite Composites: Preparation, Characterization and Antibacterial Properties». *Materials*, 2025, Vol. 19, № 2, pp. 183–195.
- [3] «Zeolite-based nanocomposite modified with hydrated iron oxide (III) for removal of heavy metals». *Ukrainian Chemistry Journal*, 2022, 18 (17), 3964.
- [4] «Natural zeolite-clinoptilolite characteristics determination and modification» / Shadrikov A. S., Petukhov A. D. // Вісник НУ «Львівська політехніка», 2014, № 781 (Теорія і практика будівництва), S. 162–167. – базове дослідження властивостей природного кліноптилоліту, зокрема з українських родовищ (включно з описом структури, пористості, адсорбційних характеристик).
- [5] «Zeolite-supported silver as antimicrobial agents». *Coordination Chemistry Reviews*, 2019, Vol. 383, p. 1–29. DOI: 10.1016/j.ccr.2018.12.014 – оглядова стаття на тему застосування цеолітів з іонами срібла як антимікробних агентів, з детальним аналізом різних типів цеолітів і форм їх використання.

КОНЦЕПЦІЯ «НУЛЬОВИХ ВІДХОДІВ» У КОСМЕТОЛОГІЧНОМУ ВИРОБНИЦТВІ: ТЕХНОЛОГІЇ ПОВТОРНОГО ВИКОРИСТАННЯ ЗАЛИШКІВ СИРОВИНИ

Марія Бойко, Оксана Бойко

Хмельницький національний університет

**Corresponding author: boikook@khmnu.edu.ua, Khmelnytskyi, 29008, Ukraine*

This article examines the possibility of implementing the zero waste concept by reusing plant-based raw materials in craft cosmetic production. Using the example of the Soap Stories enterprise, technological solutions for the reuse of vegetable and fatty raw material residues and optimization of production processes were analyzed, as well as the application of green chemistry and resource conservation principles.

Key words: cosmetic industry, Soap Stories, plant materials.

1. Вступ

Сучасна косметична індустрія перебуває на етапі глибокої трансформації, зумовленої вимогами сталого розвитку, екологічної безпеки та соціальної відповідальності. Зростання інтересу до натуральних, етичних і біорозкладних засобів спричинило активне впровадження

концепцій зеленої хімії та “Zero Waste” (нульових відходів) навіть у малих, крафтових виробництвах [1]. Концепція «нульових відходів» у косметичній галузі полягає у створенні замкнених циклів виробництва, де залишки одних процесів стають ресурсом для інших. Для крафтових підприємств цей підхід має подвійну цінність – він одночасно зменшує витрати на сировину й мінімізує негативний екологічний слід [2]. Це набуває особливої значущості в контексті сучасної екологічної політики Європи, орієнтованої на принципи циркулярної економіки. Реалізація таких підходів у малих косметичних виробництвах демонструє приклад реального втілення стійких моделей розвитку в локальному бізнесі [3]. Крафтові косметичні підприємства, зокрема Soap Stories, мають значну перевагу – гнучкість технологічних процесів та дозування, відсутність складних автоматизованих ліній, що дозволяє оперативно впроваджувати екологічні рішення. Разом із тим, такі виробництва стикаються з викликами, пов’язаними з утилізацією залишків олій, восків, гідролатів, рослинної сировини та пакувальних матеріалів [4].

Метою дослідження було розробити й апробувати практичні технологічні рішення для впровадження концепції «нульових відходів» у крафтовому косметичному виробництві Soap Stories, що використовує виключно натуральну, сертифіковану рослинну сировину. Основні завдання полягали: в аналізі структури відходів у виробництві мила, скрабів, олій, шампунів і свічок; визначені напрямку повторного використання залишків сировини; оцінки ефективності екологічних рішень у межах зеленої хімії та розробці рекомендацій для впровадження циклічних технологічних моделей у малих косметичних виробництвах [5].

Об’єкт дослідження стали виробничі процеси, що відбуваються на підприємстві Soap Stories, яке спеціалізується на виготовленні: натурального мила; натуральних цукрових та соляних скрабів; олій для тіла й обличчя; шампунів і бальзамів для волосся; ароматичних свічок на основі соєвого та пальмового воску.

2. Результати і обговорення

У процесах дослідження розглянуто підходи до впровадження концепції «нульових відходів» у крафтовому виробництві натуральної косметики. На прикладі підприємства Soap Stories проаналізовано технологічні рішення щодо повторного використання залишків рослинної та жирової сировини, оптимізації виробничих процесів, а також застосування принципів зеленої хімії й ресурсозбереження. Запропоновано екологічну модель внутрішнього циклу сировини, яка сприяє зменшенню навантаження на довкілля та підвищенню ефективності виробництва. Обрізки та залишки мила переробляються у господарське або технічне мило, а також додаються у склади скрабів як м’який абразив. Залишки цукру або солі після виробництва скрабів змішуються з оліями нижчої фракції – утворюючи мило-скраб без додаткової сировини. Залишки рослинних олій після дозування використовуються для виготовлення аромасвічок, що знижує втрати дорогих базових компонентів. Відпрацьовані гідролати та настої вводяться до технологічних водних фаз у наступних партіях кремів або шампунів, якщо дозволяє мікробіологічний контроль. Віск із залишками ароматів переплавляється та використовується як шар для пробників або свічок-тестерів. Використовуються скляні, жестяні та біорозкладні пакування, які приймаються на повторне наповнення у межах програми Soap Stories Refill System. Паперові етикетки друкуються на переробленому картоні, чорнила – на водній основі. Застосовано низькотемпературні методи омилення ($\leq 45^{\circ}\text{C}$), що зменшує споживання енергії. Виробничі партії плануються з урахуванням повного використання сировини, а вода для миття обладнання частково повторно очищується через фільтраційні системи.

Запропонована модель внутрішнього повторного використання сировини виявила, що до 25–30 % відходів косметичного виробництва можуть бути реінтегровані у цикл без втрати якості кінцевої продукції. Це свідчить про потенціал крафтових підприємств до реалізації локальної циркулярної економіки – коли виробництво не лише створює цінність, а й мінімізує вплив на екосистему. Особливістю Soap Stories є відсутність синтетичних інгредієнтів, тому

технологічні рішення базуються на біосумісних компонентах, що повністю підлягають біодеградації. Це забезпечує високу екологічну безпеку навіть при повторному використанні залишків. Впровадження концепції «нульових відходів» потребує не лише технологічних, а й організаційних рішень: персонального контролю дозування, маркування залишків, мікробіологічного моніторингу, системного підходу до зберігання й переробки [6, 7].

Таким чином у крафтовому косметичному виробництві Soap Stories реалізовано ефективну модель “Zero Waste”, що базується на принципах зеленої хімії та циркулярної економіки. Впроваджено комплексні технології повторного використання залишків мильних мас, восків, гідролатів і рослинних олій. Розроблені рішення дозволяють скоротити обсяг відходів на 30 %, зменшити енергоспоживання на 12 % і підвищити рентабельність виробництва. Концепція «нульових відходів» у крафтовому секторі має значний потенціал для масштабування та може стати моделлю сталого розвитку для локальних косметичних підприємств України.

Список використаних джерел

- [1] European Commission. (2020). Circular Economy Action Plan: For a Cleaner and More Competitive Europe. Brussels: European Union.
- [2] ISO 16128-1:2016, ISO 16128-2:2017. Guidelines on Technical Definitions and Criteria for Natural and Organic Cosmetic Ingredients. International Organization for Standardization.
- [3] Савельєв, О. М., Ткаченко, І. В., Мельник, Л. А. (2020). Екологічна хімія та технології сталого розвитку. Київ : КПІ ім. І. Сікорського. – 240 с.
- [4] Жукова, Т. В., & Трофименко, Н. С. (2021). Впровадження принципів зеленої хімії у виробництві косметичних засобів // Вісник Хмельницького національного університету. Технічні науки, № 5.
- [5] Ribeiro, A. S., & Soares, R. D. (2022). Waste Reduction Strategies in Small-Scale Cosmetic Manufacturing. // Journal of Sustainable Production, Vol. 8(3), p. 45–56.
- [6] Plastic Free Foundation. (2023). Zero Waste Production Guidelines for Small and Medium Enterprises. Perth, Australia
- [7] Клименко, Н. М., & Шевченко, О. О. (2021). Концепція “нульових відходів” як елемент сталого розвитку малого бізнесу в Україні. // Екологічна економіка, № 3 (67), с. 74–80.

COMPOSITE SYSTEMS OF SOLID SHAMPOOS WITH IMPROVED FOAMING AND STRUCTURAL CHARACTERISTICS

Zoriana Chereshnia^{1*}, Tetiana Ivanishena², Katarzyna Łoś³

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

³*Technical University of Liberec, Liberec, Czech Republic*

**Corresponding author: zorik.cher@gmail.com, Khmelnitskyi, 29021, Ukraine*

Solid shampoos are gaining prominence as consumers seek sustainable alternatives that reduce water use and packaging waste. Formulating high-performance bars requires a delicate balance of foaming, structural integrity, and conditioning. Success depends on a synergistic system of green surfactants, fatty acids, and waxes. This strategic combination ensures the product delivers the rich lather and durability consumers expect while meeting rigorous ecological standards.

Keywords: solid shampoos, surfactants, foaming, waterless.

1. Introduction

Solid shampoo formulations are a cornerstone of the broader “waterless” and environmentally conscious trend in the cosmetics industry. The primary objective of this movement is to minimize water usage throughout a product's entire life cycle, from raw material sourcing and

production to consumer use. This strategic shift away from water as a primary filler ingredient offers significant ecological advantages, including a reduction in the product's overall water footprint, lighter and more compact packaging that curtails plastic waste, and a lower carbon footprint from transportation. Furthermore, the waterless nature of these formulations often reduces or eliminates the need for preservatives. However, the core challenge for formulators is to engineer these concentrated solid formats to deliver the high-performance foaming, cleansing, and conditioning that consumers have come to expect from their liquid counterparts [1, 2].

A modern solid shampoo is fundamentally different from a traditional soap bar. It is a concentrated, waterless or low-water composite system. Instead of being based on the saponification of fats and oils, its structure is built upon a sophisticated blend of synthetic or bio-based surfactants, bar hardeners, and conditioning agents. This avoids the primary drawback of saponified bars, which leave an alkaline residue and can precipitate calcium salts on the hair strands, leaving them opaque, tangled, and difficult to manage. The primary ingredient is typically a powdered surfactant that provides the solid base, which is then combined with other functional ingredients to create a durable, effective, and aesthetically pleasing final product.

2. Surfactants

Surfactants, or surface-active agents, are the central functional ingredients in any shampoo formulation, whether liquid or solid. Their primary role is to act as cleansing agents that reduce surface tension, emulsify sebum and dirt from the hair and scalp, and generate the foam that consumers associate with a thorough clean. Surfactants are classified into four main groups based on the electric charge of their polar head, which determines their primary function in a formulation. Anionic, with a negative charge, serve as the main cleansing agents responsible for producing significant lather. Cationic have a positive charge and are primarily used as conditioning agents, offering antiseptic properties by disrupting bacterial cell membranes. Amphoteric surfactants possess both positive and negative charges and act as secondary agents to improve mildness and reduce irritation. Finally, non-ionic have no charge and are often combined with others to increase formulation stability and ensure the product remains mild.

The choice of the surfactant system is critical, as it dictates the product's cleansing efficacy, its mildness on the hair and scalp, its foaming characteristics, and its overall environmental profile. As the industry moves toward greater sustainability, a key focus has been the comparison of conventional petroleum-based surfactants with emerging green alternatives [3].

The transitioning from petroleum-derived surfactants to more sustainable, bio-based alternatives is underscored by the scale of conventional surfactant use. Over 15 million tons of surfactants are used annually worldwide, an estimated 60 % of which end up in the aquatic environment, which makes ecological stakes significant. This shift is driven by both environmental concerns and a demand for milder, higher-performance products.

Petroleum-Based Surfactants are derived from the processing of oil and gas. Their use carries potential environmental consequences, including poor biodegradability and negative impacts on aquatic ecosystems. Common examples, such as Sodium Lauryl Sulfate (SLS), can be harsh on the hair and scalp, stripping natural oils and leading to dryness and irritation.

Green (Bio-Based) Surfactants are derived from renewable feedstocks of microbial or plant origin, these ingredients offer significant advantages. They are defined by high biodegradability, lower toxicity, and a better environmental profile. The most commonly used examples are Sodium Cocoyl Isethionate, Coco-glucoside, Decyl Glucoside, Polyglyceryl-10 laurate, amino acid based surfactants and microbial biosurfactants [4].

3. Solid Shampoo Formulation

A solid shampoo is a composite system that relies on a synergistic blend of ingredients to achieve both structural integrity and high performance. The formulation must carefully balance cleansing power with conditioning benefits and bar hardness with ease of application and use. Each component serves a specific function, from creating the solid base and generating foam to

hardening the bar and imparting moisture to the hair. This selection impacts the product's final performance. A combination of hard and soft structural agents is used to create a durable yet pleasant-feeling bar. The primary goal is to achieve a high structural resilience without making the product brittle or difficult to apply [1].

Conditioning agents are vital for restoring the hair's natural hydrophobicity, reducing friction between hair fibers, preventing breakage, and imparting softness and shine.

Based on this data were suggested formulations of the composite systems of solid shampoo (refer to: Table 1).

Table 1 Suggested Composite Formulations

Ingredient/Formulation [%]	F1	F2	F3	F4	F5	F6	F7	F8	F9
Sodium Cocoyl Isethionate	60	60	60	40	40	40	20	20	20
Sodium Coco-Sulfate	—	—	—	20	20	20	40	40	40
Cocamidopropyl Betaine	5	10	15	5	10	15	5	10	15
Cetearyl Alcohol	2	3	4	3	4	2	4	3	2
Karite Butter	2	3	4	3	4	2	4	3	2
Decyl Glucoside		5		Panthenol					2
Sodium Lauroyl Oat Amino Acids		3		Wheat Hydrolyzed Protein					2
Glycerol		4		Water				Up to 100	

Sodium Cocoyl Isethionate (SCI) and Sodium Coco-Sulfate (SCS) were chosen as the primary anionic surfactants in this formulations. Derived from coconut oil, both SCI and SCS are a high-purity cleansing agents. They are considered to show a lower potential for skin irritation. Their physical properties are critical to the manufacturing process. To complement the primary surfactants, Cocamidopropyl Betaine, Decyl Glucoside and Sodium Lauroyl Oat Amino Acids are included as co-surfactants. Their primary role is to enhance the overall mildness of the formula, reduce the potential irritation that can be caused by anionic surfactants, and improve the quality of the foam.

To create a durable solid bar that maintains its integrity during use, a combination of structural agents was employed. Cetearyl Alcohol and Karite Butter were chosen as the primary hardeners to provide the fundamental structure and opacity of the bar. Their inclusion is essential for creating a solid matrix that binds the other ingredients together, ensuring the physical integrity and longevity of the shampoo bar.

To counteract the stripping effect of surfactants and impart a smooth, soft feel to the hair, a carefully selected package of conditioning agents and emollients is included. Ingredients, such as glycerol, panthenol and wheat hydrolyzed protein, are expected to lubricate the hair cuticle, reduce friction, and restore the hair's natural hydrophobicity.

The shift to solid shampoo formulations represents a significant reduction in the environmental footprint of personal care products. By adopting a waterless format, these systems directly address global water shortage while enabling highly concentrated dosages that reduce overall consumption. This form of product allows for the elimination of plastic packaging in favor of lightweight, biodegradable alternatives, lowering carbon emissions associated with transportation and waste. Furthermore, the integration of renewable, bio-based surfactants and the removal of preservatives minimizes aquatic toxicity, resulting in a product that is environmentally superior across its entire lifecycle [2].

Determining the quality of a finished solid shampoo involves a technical assessment of structural integrity, functional performance, chemical stability, safety, and sensory appeal. Structural quality is assessed through texture analysis and the crack test, measuring parameters like hardness and cohesion, where excessively low hardness values need optimization of consistency agents to

prevent bar breakage. Functional effectiveness centers on cleansing and foaming characteristics. Detergency power measures sebum removal from hair and skin, with high-quality formulations showing excellent cleaning potential. Foaming ability and stability tests quantify the volume of foam generated and sustained over time measured is assessed by the modified method of Ross-Miles [5]. Physicochemical stability checks include the pH value (measured on a 5 % dispersion, typically aiming for 4.0 to 7.0 which is the varied pH of the scalp) [6]. Evaluation of stability, confirming no changes in structure, color, or odor after stress exposure. Safety includes performing microbiological analysis to ensure the low water content media is not conducive to fungal or bacterial growth. Furthermore, microscope observation can confirm that the product does not damage the hair cuticle, alongside sensory tests to guarantee desirable end-user attributes like ease of wet and dry combing, cleanliness, and hair gloss.

4. Results and discussion

The development of advanced composite solid shampoos represents a significant and necessary step toward greater sustainability within the cosmetics industry. These innovative formulations should demonstrate that it is possible to create products that are both highly effective and ecologically responsible. By carefully selecting and combining surfactants, structural agents, and conditioning ingredients, it is possible to engineer stable, high-performance solid shampoos that meet consumer expectations while minimizing environmental impact. The future of this rapidly growing category lies in the continued pursuit of merging of the scientific formulations with a deep commitment to ecological responsibility to satisfy the demands of modern, environmentally conscious consumer.

References

- [1] Brilhante, I. V.: Development of a Solid Organic Shampoo Formulation. 2018.
- [2] Silva de Lima, L.: Development and evaluation of the effectiveness of the solid shampoo bar. *Biomedical and Biopharmaceutical Research*, Vol. 20, No. 2, pp. 28–42, 2023.
- [3] Gavazzoni Dias, M. F. R.: Hair Cosmetics: An Overview. *International Journal of Trichology*, Vol. 7, No. 1, pp. 2–15, 2015.
- [4] Nagtode, V. S., Cardoza, C., Yasin, H. K. A., Mali, S. N.: Green Surfactants (Biosurfactants): A Petroleum-Free Substitute for Sustainability – Comparison, Applications, Market, and Future Prospects. *ACS Omega*, Vol. 8, 2023.
- [5] ISO 696-1975: Surface active agents – Measurement of foaming power – Modified Ross-Miles method, 1975.
- [6] EN 1262:2003 Surface active agents – Determination of pH value of solutions or dispersions, 2003.

INDUSTRIAL HEMP: CURRENT CHALLENGES AND PROSPECTS FOR SUSTAINABLE BIO-BASED RAW MATERIAL IN INDUSTRY

Tetyana Holovenko^{1*}, Olha Hulai², Vitalii Pavlenko³

¹⁻³*Lutsk National Technical University, Lutsk, Ukraine*

**E-mail, postal address: t.holovenko@lutsk-ntu.com.ua, 75 Lvivska Str., Lutsk, Ukraine*

Within the framework of the sustainable development concept, the global textile industry is currently focused on reducing the use of synthetic materials that pollute the environment. Hemp is a fully biodegradable raw material that enables the reduction of the production carbon footprint. The global market for industrial hemp products demonstrates stable growth. Currently, Ukraine possesses significant opportunities for hemp cultivation due to favorable natural and climatic

conditions, scientific potential, and substantial industry deregulation, which paves the way for leadership in the global market.

Keywords: sustainable development, hemp, Sofia variety, qualitative properties, bio-based raw material.

1. Introduction

Industrial hemp represents a valuable bio-based raw material of the past, present, and future, combining high strength, environmental purity, and universality of application. In the context of the global transition to a green economy, hemp is becoming a primary feedstock for a renewable and eco-friendly textile industry. Its strategic significance lies not only in fiber production but also in the utilization of resources that do not harm the environment but rather restore it. It is a well-established fact that hemp is a relatively low-maintenance crop capable of growing on various soil types without requiring intensive pesticide use, rendering it environmentally sustainable [1].

The primary prospects for using industrial hemp as a sustainable bio-based raw material in Ukraine's industry are defined by:

- legislative changes and regulatory simplification: the launch of the «e-Konopli» (e-Hemp) electronic crop registration system and the abolition of special permits enhance the industry's attractiveness for agrarians;
- market needs and technological innovations: this is ensured by a wide spectrum of industrial hemp product applications. The fiber is utilized in textiles and the production of high-strength composites (e.g., in the automotive industry), shivs (hurds) are used in eco-construction (hempcrete, wall building materials, etc.), and seeds are applied in the food and medical sectors;
- environmental friendliness and sustainable development: hemp is a fast-growing crop that does not require large quantities of pesticides, it improves soil structure by clearing toxins, possesses bioremediation capabilities, and acts as an effective CO₂ sink. This aligns with global trends in the sustainable economy and «green» manufacturing;
- high export potential: Ukrainian hemp products have a high potential to occupy a niche in actively developing European and global markets, while Ukraine has all the prerequisites to become a leading exporter of hemp products [1, 2].

2. Results and discussion

Despite significant prospects, challenges exist, particularly a deficit of seeds for certain varieties and an underdeveloped infrastructure for deep primary and secondary mechanical processing. However, these issues are being addressed through investment and the development of new processing enterprises. A notable example is the restoration of a hemp processing plant in the Zhytomyr region – the Ma'Rijany Hemp Company industrial park («Ma'Rijany») [3]. As a modern Ukrainian agribusiness structure, this industrial park is implementing Ukraine's largest project for the cultivation and processing of industrial hemp and the mechanical processing of flax. Such an agro-complex is strategically important given the raw material import dependence of Ukrainian enterprises, as it forms an innovative ecosystem with a sustainable economic future. It is potentially expected to meet domestic industrial needs for textile raw materials of a wide application spectrum – long, short, and cottonized bast fiber, shivs, etc. Currently, the agro-complex focuses on determining the selection of rational industrial hemp varieties, improving the technological process of primary and secondary raw material processing, and equipping facilities with modern machinery for mechanical processing to obtain products of various functional purposes. It is set to become a sustainable bio-based raw material source for Ukrainian industry, contributing to economic growth and the sustainable development of the state, while holding strategic importance for European markets. Industrial hemp is a promising raw material not only for the textile and construction industries but also attracts global attention as a sustainable, eco-friendly material for creating bio-composite packaging due to its environmental properties, high physico-mechanical fiber characteristics, and cellulose content. Unlike synthetic polymers, materials made from hemp-based

raw material are biodegradable and do not accumulate in the environment. Furthermore, packaging based on natural fibers is capable of regulating gas exchange and moisture transfer, which positively impacts the preservation of food product quality, particularly for natural and organic assortments.

Lutsk National Technical University (LNTU) collaborates with the Ma'Rijany Hemp Company industrial park regarding research on the quality of various industrial hemp varieties grown within the park, as well as scientific consulting. Specifically, experimental studies on the qualitative characteristics, chemical composition, and anatomical structure of new industrial hemp varieties were conducted in LNTU laboratories; results for selected parameters are presented in Table 1.

Table 1 Experimental studies of qualitative characteristics of the Sofia variety

Characteristics	Industrial hemp fiber of the Sofia variety		
	fiber after scutching and rough hackling	fiber after scutching, rough and fine hackling	Shivs
Breaking load, daN	27,28	23,25	–
Linear density, tex	34,19	12,86	–
	73,95	71,8	52,0
Cellulose content, %			
Light microscopy			–

Based on experimental studies of the qualitative characteristics, chemical composition, and anatomical structure (Table 1) of the new industrial hemp variety Sofia, generalized conclusions regarding the economic potential of the stem and fibers were drawn. High indicators of fiber strength, linear density, and cellulose content indicate the possibility of using this fiber in the production of technical and cellulose products, as well as high-quality textile materials, depending on the technological processing method. The cross-section of the Sofia variety fibers clearly displays the presence of air channels (lumens) of various shapes, while the elementary fibers have a rounded or bean-like (reniform) shape and are tightly adjacent to one another. The rounded shape of the elementary fibers with a wide lumen is characteristic of bast crops, whereas cotton elementary fibers exhibit a bean-like (reniform) shape with a narrow, elongated lumen. Consequently, microscopic studies of the cross-sections of these fibers confirm once again that the «Sofia» variety is a universal, modern, technological bast variety of industrial hemp. It is created for maximum economic efficiency in various industrial segments and oriented toward the production of fine and strong fiber for a wide spectrum of applications, ranging from technical and textile to cellulose products, depending on the quality and technological processing of the fiber.

Thus, despite current challenges, industrial hemp holds significant potential to become a key sustainable bio-based raw material for various industrial sectors, owing to the universality of new varieties and innovative technological solutions for raw material processing. The main prospects for

hemp cultivation in Ukraine and globally lie in the implementation of sustainable development strategies, while the high profitability of this crop, derived from a wide range of finished eco-product applications, creates a foundation for the development of a competitive textile production sector and the export of high-quality products.

References

[1] Production and processing of industrial hemp: current status, trends, challenges. User: <https://kse.ua/wp-content/uploads/2025/04/Hemp-EU-1.0-UKR.pdf>, available on-line 20.11.2025.

[2] Votchenikova, V. M., Lyalina, N. P., Votchenikova, O. V.: Trends in the use of technical hemp in the construction industry: Marketing strategies, entrepreneurship and trade: current status, directions of development: materials of the II International Scientific and Practical Internet Conference, Kyiv, pp. 45–51, 2021.

[3] Ma'Rijany Hemp Company [Ma'Rijany Hemp Company]. User: www.facebook.com/share/15mwrHpNj5/; https://www.instagram.com/reel/C_vFcjVtu5h/?igsh=MXV0eHF3cWZzenJIMw%3D%3D, available on-line 25.11.2025.

ОЦІНКА ВПЛИВУ САПОНІТОВОЇ ГЛІНИ НА ФІТОЕКСТРАКЦІЮ ВАЖКИХ МЕТАЛІВ

Анна Магдійчук

Хмельницький національний університет

*Corresponding author: mahdiichuk@gmail.com, Khmelnytskyi, 29008, Ukraine

The paper representing the prospects for using saponite clay as a sorbent in the process of phytoextraction of heavy metals from contaminated areas. The concept of heavy metals, the ways in which they enter the environment and the negative impact on environmental components are defined. The prospects for the use of phytoremediation and phytoextraction of heavy metals are determined. The use of saponite clay as a sorbent in phytoextraction of heavy metals is assessed by using SWOT analysis.

Keywords: saponite, phytoremediation, pollution, soilrestoration.

1. Вступ

В умовах сьогодення спостерігається інтенсивний розвиток промисловості та сільського господарства, що сприяє збільшенню антропогенного навантаження на природне середовище. Діяльність людини призводить до порушення природних механізмів, погіршення стану основних компонентів екосистем, деградації ґрунтового покриву, забруднення водних систем, атмосферного повітря, втрати біорізноманіття.

Одним з поширених хімічних забруднень навколошнього середовища є забруднення важкими металами. Важкі метали являють собою метали з густинною, більшою за 5 г/см^3 і які є групою металів, які асоціюються із забрудненням і потенційною токсичністю або екологічною токсичністю. Металами-полютантами навколошнього середовища є кадмій, купрум, цинк та манган. Важкі метали також характеризуються їх важливістю або неважливістю за їхньою роллю в біологічних системах. Важливими є такі важкі метали, як манган, ферум, купрум та цинк, тоді як кадмій, плюмбум та гідраргірум є надзвичайно токсичними і біологічно несуттєвими [1].

Антропогенне накопичення важких металів відбувається за рахунок промислової діяльності, утилізації побутових відходів, невибіркового використання добрив, викидів з автотранспорту, виробництва енергії.

Важкі метали потрапляють у навколошнє середовище і під час активних бойових дій з залишків зброї, використання артилерії, гранат і ракет. В умовах повномасштабного вторгнення, забруднення важкими металами збільшило свої оберти в межах України, особливо складна ситуація в межах окупованих територій, де обстріли важкою артилерією відбуваються постійно. Моніторинг наслідків війни в Україні, проведений 2022 року за Програмою ООН з навколошнього середовища (UNEP), засвідчує, що вже на той час забруднення довкілля внаслідок війни являло собою токсичну спадщину для майбутніх поколінь [2; 3].

Потрапляння важких металів в ґрунт зумовлює негативний вплив на властивості ґрунту, його родючість, біологічну і мікробіологічну активність, що робить його малопридатним або взагалі непридатним для подальшого рентабельного використання [4].

Очищення земель від важких металів є одним із ключових викликів сталого розвитку для України, яке визначає якість довкілля, безпеку і здоров'я населення, стійкість природних та агроекосистем, відповідність міжнародним нормам і стандартам. Тому дослідження процесів, сорбентів, природо орієнтованих методів очищення територій від важких металів є надзвичайно важливим та актуальним питанням.

2. Результати і обговорення

За виявлення важких металів, за допомогою проведення фіторемедіації та підбору біологічних агентів можна одночасно вилучити важкі елементи із середовища та покращити структуру порушеного ґрунту.

Табл. 1 Використання сапонітової глини як сорбента для фітоекстракції важких металів

S (Strengths) – Сильні сторони	W (Weaknesses) – Слабкі сторони
<ul style="list-style-type: none"> висока сорбційна здатність: сапоніт є монтморилонітovим мінералом з великою питомою площею поверхні і високою ємністю катіонного обміну, що дозволяє ефективно зв'язувати іони важких металів; стабільність у зв'язуванні: сапоніт формує стійкі комплекси з іонами важких металів, зменшуючи їхню мобільність і доступність для інфільтрації у ґрутові води; комплексність дії: окрім зв'язування важких металів, сапоніт здійснює структуроутворючу функцію для ґрунту та покращує водно-фізичні властивості; безпечність: сапоніт є матеріалом природного походження, який доступний для використання 	<ul style="list-style-type: none"> можливе зниження біодоступності; залежність від pH: за низьких рівнів pH здатність до зв'язування важких металів може погіршитись; різниця складу: властивості сапоніту та його склад залежать від родовища, де його видобували, тому за використання різного за походженням сапоніту результат може відрізнятись
O (Opportunities) – Можливості	T (Threats) – Загрози
<ul style="list-style-type: none"> вдале комбінування з процесами фітоекстракції; поєднання сапоніту з хелатуючими речовинами для зменшення токсичності та збільшення доступності для рослин-гіперакумуляторів, які беруть участь в фіторемедіації; підвищення адсорбційної здатності: за допомогою кислот та органічних речовин відбувається активація сапоніту, що покращує його властивості 	<ul style="list-style-type: none"> потреба в чітких дозуваннях сапоніту для запобігання погіршення фітоекстракції; ризик вторинного забруднення важкими металами за нестабільних умов середовища; є непридатним для використання в сильно забруднених або сильно кислих/сильнолужних ґрунтах; конкуренція на ринку з бентонітами та цеолітами, які також застосовуються в якості меліорантів

Очищення ґрунтів від важких металів за допомогою зелених рослин є вигідним методом, оскільки витрати на культивування рослин мінімальні у порівнянні з витратами на традиційні методи, які включають заміну ґрунтів. Найбільш розповсюджені методи ремедіації забруднених ґрунтів *in situ*, які базуються на видаленні важких металів або їх зв'язуванні. Серед основних різновидів фіторемедіації найбільш зручним та доступним у даний час є метод фітоекстракції [5; 6].

Допоміжними засобами в фіторемедіації є шари матеріалів, які забезпечують захист рослин, електричний струм, регулятори росту, а також використання сорбуючих елементів для кращого зв'язування рухомих форм металів. За дослідженням В. Самохвалової та ін. (2014), метод передбачає використання мінеральних субстратів, а саме внесення глинистих мінералів (монтморилоніт і палигорськіт) у дозі 2 т/га у малородючі (піщані чи супіщані) сильно забруднені ґрунти [6].

Перспективним природним сорбентом для екологічних технологій очищення ґрунтів є сапоніт – мінерал підкласу шарових силікатів, групи монтморилонітів із високим вмістом оксиду магнію, в якому йони алюмінію практично повністю замінені йонами магнію, а йони кремнію замінюються йонами алюмінію. Сапонітові глини відносять до дев'ятої групи мінералів – групи силікатів і алюмосилікатів, представники якого (з урахуванням кварцу) складають 95 % від маси земної кори [7].

За допомогою SWOT-аналізу було здійснено оцінку потенціалу та обмежень використання сапонітової глини в якості допоміжного матеріалу (сорбенту) в фітоекстракції важких металів (див. таблицю 1).

Висновки. Забруднення важкими металами є однією з найнебезпечніших форм деградації довкілля, оскільки ці елементи не руйнуються в природних умовах, здатні сорбуватись в ґрунті, утворюючи важкорозчинні сполуки, накопичуватись воді, рослинності та біоті, переходят у трофічні ланцюги й створюють довготривалу загрозу для екосистем і здоров'я людини. Використання методів фіторемедіації і фітоекстракції є перспективним та економічно-ощадним методом відновлення порушеніх забрудненням важкими металами територій, які у поєднанні з застосуванням сорбентів та підбором високопродуктивних біологічних агентів можуть виконувати подвійну функцію: покращення показників порушеніх ґрунтів та виведення важких металів.

Список використаних джерел

- [1] Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. *Journal of chemistry*, Vol. (1). P. 6730305
- [2] Забруднення земель. «Екодія». URL: <https://ecoaction.org.ua/wp-content/uploads/2023/03/zabrudnennia-zemel-vid-rosii-full3.pdf>
- [3] Гуліч М. П., Харченко О. О., Петренко О. Д., Ємченко Н. Л., Ольшевська О. Д., Любарська Л. С. (2024). Війна в Україні: проблема забруднення важкими металами сільськогосподарських угідь та продукції (аналіз літературних даних). *Environment&Health*, № 4, 38–44. DOI: <https://doi.org/10.32402/dovkil2024.04.038>
- [4] Купчик О., Савонова А. Оцінка вмісту рухомих форм Fe, Zn, Cu, Cd та Pb в ґрунті. ВНТ: Biota. Human. Technology. Вип 1 (1). С. 107–115.
- [5] Бузіна І. М. (2022). Фіторемедіаційні технології в агроландшафтних екосистемах. Перспективи виробництва біосировини 207–210.
- [6] Мудрак О. В., Магдійчук А. П. (2024). Фіторемедіація ґрунтів як спосіб зниження концентрації важких металів в зоні проведення бойових дій: матеріали Всеукраїнської науково-практичної конференції «Природа в окупації – 10 років російської військової агресії проти довкілля» (м. Хмельницький, 28–29 березня 2024 р.). С. 142–144.

[7] Магдічук А. П. (2025). Тенденції використання сапонітової глини в різних сферах господарства. *Стан і перспективи розвитку хімічної, харчової та парфумерно-косметичної галузей промисловості* : матеріали VII Всеукраїнської науково-практичної конференції (30 травня 2025 р., м. Хмельницький) / Під ред. Л. В. Салєби, М. Є. Рацук. С. 192–194.

ДОСЛІДЖЕННЯ УЛЬЦЕРОГЕННОЇ ДІЇ ГУСТОГО ЕКСТРАКТУ З КВІТІВ ЦИНІЇ ВИТОНЧЕНОЇ

Оксана Качур*, Григорій Загричук

Тернопільський національний медичний університет ім. І.Я. Горбачевського
МОЗ України, кафедра загальної хімії; *kachur_oi@tdmu.edu.ua

Diseases of the hepatobiliary system remain an important medical problem, which necessitates the search for new effective hepatoprotectors of plant origin. The aim of the study was to evaluate the effect of a thick extract of Zinnia spicata flowers on the condition of the gastric mucosa of rats when administered orally. GECV was administered at a dose of 150 mg/kg and macroscopic evaluation was performed 3 hours later. The absence of pronounced mucosal damage was established, which indicates the safety of the drug for the gastrointestinal tract.

Keywords: ulcerogenic effect, *Zinnia spicata*, thick extract.

1. Вступ

Відповідно до ретроспективного аналізу літературних джерел захворювання печінки та жовчогінних шляхів залишається серйозною медичною проблемою. Патології гепатобіліарної системи посідають наступне місце після серцево-судинних хвороб. На сьогодні не втрачає актуальності питання профілактики, діагностики та лікування захворювань гепатобіліарної системи через високу поширеність і серйозні наслідки. Тому, перед науковцями постає проблема пошук та виготовлення лікарських засобів, що застосовувалися б при захворюваннях печінки та жовчогінних шляхів.

Перспективними є лікарські форми рослинного походження. Такі препарати можуть мати широкий спектр фармакологічної активності, зокрема, проявляти гепатопротекторні та антиоксидантні властивості.

2. Результати та обговорення

Дослідження було вивчення впливу густого екстракту з квітів цинії витонченої (ГЕЦВ) на стан слизової оболонки шлунку експериментальних тварин. У ході роботи було використано методику Андреєвої Н.І. і Шарової С.Д.

Використання лікарських препаратів пероральним шляхом може негативно впливати на слизову оболонку кишково-шлункового тракту. Відомо, що можуть розвиватися подразнення слизових оболонок шлунку. За даних умов часто прослідковуються нудота, здуття та втрата апетиту. Часто серед побічних явищ може спостерігатися запор, пронос та порушення травлення. У наукових джерелах зазначено, що ряд лікарських засобів можуть стимулювати надмірне вироблення соляної кислоти, гальмувати вироблення слизу та затримувати процеси відновлення слизових оболонок ШКТ. Зазначені умови можуть стати негативними передвісниками розвитку виразок.

Вивчення фармакологічних властивостей нових біологічно активних сполук та їх впливу на ШКТ – є одним із важливих етапів дослідження.

Експериментальним щурам перорально вводили густий екстракт у дозі 150 мг/кг. На 3 годину після введення ГЕЦВ тварин виводили з експерименту під дією тіопенталового

наркозу та вивчали стан слизової оболонки шлунку макроскопічним оглядом. Результати експерименту представлено у таблиці 1.

Таблиця 1 Вплив густого екстракту з квітів цинії витонченої на стан слизової оболонки шлунку щурів

Група тварин	Кількість тварин в групі	Локальна гіперемія
Інтактний контроль	6	0,13±0,02
ГЕЦВ	6	0,17±0,02

За результатами отриманих даних виявлено, що ГЕЦВ у дозі 150 мг/кг не впливає на стан шлунково-кишкового тракту та не виявляє ульцерогенної дії. Нами встановлено, що слизові оболонки шлунку щурів інтактної групи щурів та тварин після введення мінімальної діючої дози густого екстракту залишалися без змін. При макроскопічному дослідженні слизової оболонки не зафіковано передвісників деструктивних змін.

Отже, доведено, що густий екстракт зі квітів цинії витонченої не проявляють ульцерогенних властивостей.

UPCYCLING APPROACH TO DESIGNING AN ORIGINAL CLOTHING COLLECTION IN STREET GRUNGE STYLE

Svitlana Kuleshova^{1*}, Antonina Penkova¹

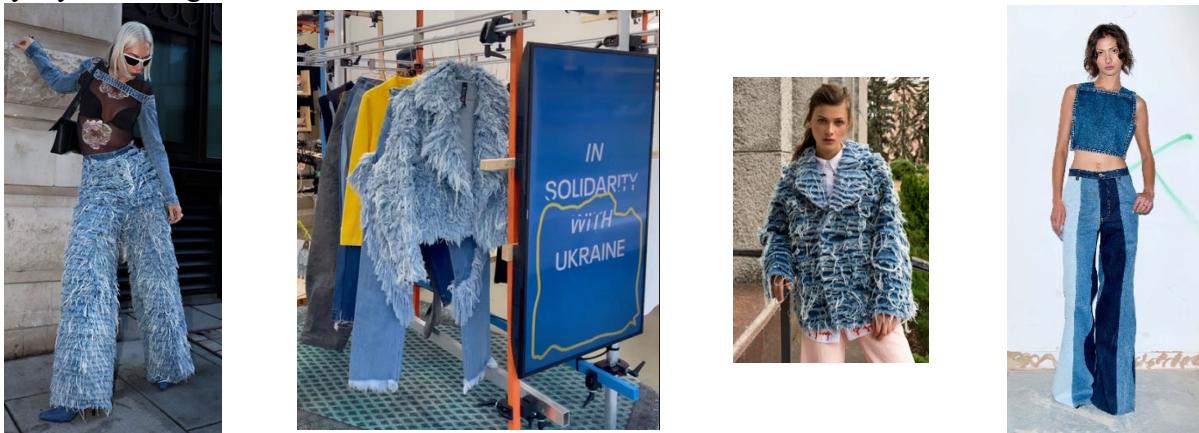
¹*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

*Corresponding author: kuleshovas@khnmu.edu.ua, Khmelnitskyi, 29000, Ukraine

The study is devoted to the development of fashion sketches of project images of the new urban style Street Grunge Style as a manifestation of modern trends in fashion, combining sustainability, innovation, and individuality. Particular attention is paid to the combination of creativity and practicality in urban street style. The main concept of the research: Fashion as freedom – clothing that carries a message, embodying ideas of innovation, eco-awareness, and creativity.

Keywords: denim upcycling, streetwear aesthetics, Street Grunge Style, sustainability.

1. Introduction


Modern fashion is undergoing a stage of rethinking values, where the focus is not only on external aesthetics but also on a conscious approach to consumption. The concepts of circularity, resource conservation, and sustainable development are becoming key in the creation of contemporary clothing design. Against the backdrop of these changes, new directions are actively developing, combining environmental consciousness with self-expression, among which Street Grunge Style stands out – a unique urban style that blends creativity, innovation, and respect for the planet's resources.

The purpose of the research is to create modern denim clothing models that combine minimalism, environmental awareness, and stylish avant-garde aesthetics. These garments will feature unconventional silhouettes, upcycling elements, and a play of textures that add contemporaneity and character to each look. The collection includes both concise and bold designs that allow individuals to express their uniqueness while treating nature with care. These items offer an important alternative to fast fashion – a style with meaning and history.

2. Results and discussion

To achieve the goal of the study, the influence of the concept of circular fashion on clothing design was analyzed, as well as examples of the work of Ukrainian designer Ksenia Schneider, who implements eco-design principles in her collections [1, 2].

The main idea of KSENIASCHNAIDER brand is denim upcycling and a sustainable approach to clothing creation. From the very beginning, the brand positioned itself as eco-friendly and sustainable, working with vintage jeans, textile leftovers, and second-hand items. Their collections are a combination of architectural cuts, streetwear aesthetics, and upcycling. They experiment with shapes and volumes, creating pieces that balance between avant-garde and everyday wear, Fig. 1.

Fig. 1 Experimental denim by Ksenia Schneider

Key aspects of the collection concept: Sustainability and environmental consciousness:

Upcycling as the foundation of the collection's philosophy: the use of recycled denim, leftover fabrics, and vintage materials. Sustainable production focused on minimizing textile waste and extending the life cycle of garments. Support for local manufacturing and ethical working conditions.

Individuality and inclusivity:

Oversized silhouettes and unisex models suitable for various body types and styles. Unique upcycled pieces, each with its own story. The brand promotes self-acceptance and freedom of self-expression without limitations.

Comfort and functionality:

Denim of various densities and washed effects for comfortable everyday wear. Comfortable silhouettes, loose cuts, functional details (detachable elements, transformable designs, spacious pockets). A combination of design-driven thinking and practicality.

Artistry and modern aesthetics:

A recognizable deconstructivist style, experiments with shape, asymmetry, and contrast. Inspiration drawn from architecture, contemporary art, and streetwear culture. Collaborations with artists and conceptual fashion projects.

Fig. 2 Variants of visualizing fashion sketches of clothes in the upcycling denim Street Grunge Style

Technology and upcycling innovations:

Use of modern fabric-processing techniques (laser cutting, washed effects, patchwork). Digital formats for presenting collections, interactive upcycling workshops, and online services for creating personalized upcycled looks.

Target audience:

Young people who value responsible fashion, unconventional design, and characterful items. Those who seek to express individuality while supporting sustainability and local production. Enthusiasts of upcycling culture, streetwear, and designer denim.

The fashion sketches are shown in Figure 2.

Examples of clothing photos in the upcycling denim Street Grunge Style are shown in Figure 3.

Fig. 3 Examples of clothing photos in the upcycling denim Street Grunge Style

Conclusions

Thus, Street Grunge Style is not merely a fashion trend but a sociocultural phenomenon that reflects the modern youth's pursuit of sustainability, individuality, and freedom. Its emergence is the result of integrating the concepts of the circular economy, innovative technologies, and creative thinking.

The work of Ksenia Schnaider clearly demonstrates how the combination of eco-philosophy, craftsmanship, and artistic expression can create a unique product that meets contemporary demands while shaping a new culture of responsible fashion.

References

- [1] <https://ua.kseniaschnaider.com/>
- [2] <https://www.village.com.ua/village/service-shopping/style-news/348563-ukrayinski-brendi-ksenia-schnaider-ta-hvoja-predstavili-spilnu-kolektsiyu-vzuttya-z-denimu>

GREEN BUSINESS MODEL FOR MAXSPORT

Svitlana Kuleshova^{1*}, Varvara Ahafonova¹, Yuliana Pylypenko¹

¹*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

**Corresponding author: kuleshova_lana@ukr.net, Khmelnitskyi, 29000, Ukraine*

The result of the developed green business model for the enterprise is firmly in the state. Strengths and weaknesses are determined - SWOT analysis of the existing business model.

Keywords: Move-X, green business model, MAXsport, SWOT analysis, proposals of changes.

1. Introduction

Move-X is a virtual academic exchange project. Virtual academic exchange involves students participating in the educational process of partner higher education institutions without traveling abroad or to another city. Interaction between the University and the partner institution takes place online through the "Single Information Space" platform (<https://move-x.khmnu.edu.ua/>), created within the ERASMUS+ MOVEx program. The educational process is conducted simultaneously in both institutions and is implemented in the format of microcredit courses. Short-term exchanges last up to three months and cover the study of individual disciplines, the results of which are then recognized by the University. Microcredit courses provide students with the opportunity to quickly and conveniently master new topics without having to complete full study programs. They allow students to expand or update their competencies even beyond their main specialization and are adaptable to different starting levels of training. This format promotes individual choice of educational trajectory, ensures an independent pace of learning, and increases the accessibility of modern knowledge for professional development and lifelong education.

The goal of the study is to develop a green business model for an existing enterprise. The business model of MAXsport, a manufacturer of custom-made knitwear for sports, was selected for the study.

2. Results and discussion

MAXsport is a brand that supports an active lifestyle and offers innovative sportswear. A team of professional consultants with in-depth knowledge in the field of sports helps customers choose products tailored to their individual needs. The company actively cooperates with sports clubs. Despite its effective work, the company, like most garment manufacturers, faces the problem of material residues, which creates potential environmental risks.

To achieve the goal, the following tasks were performed: diagnosis of the organization's environment; analysis of the current business model to identify its strengths and weaknesses; proposal to change the business model; proposals on key partners and types of activities; proposals for eco-social changes; SWOT analysis.

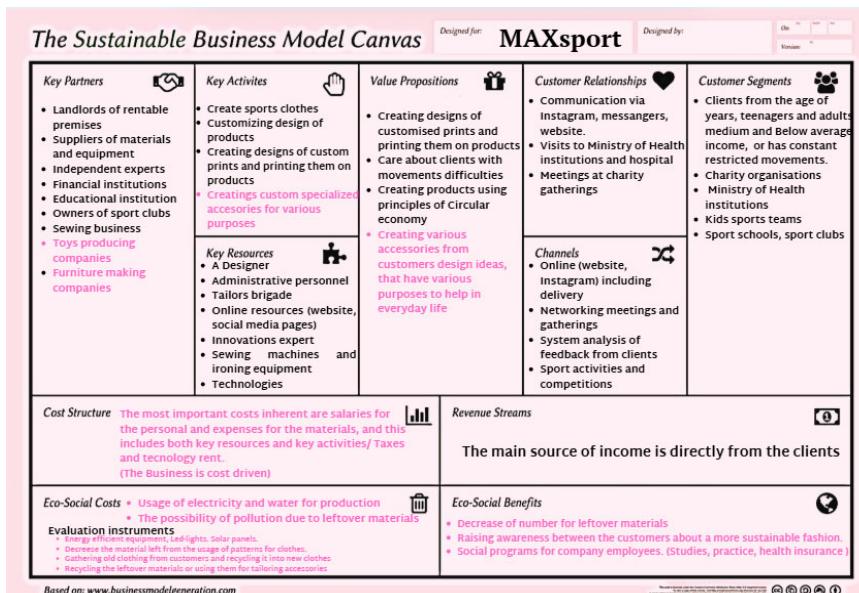
Fig. 1 Proposal to change the business model

PESTEL Analysis: Economically, textile production in Ukraine has potential due to low costs and export orientation, but companies need to consider import pressure and rising regulatory costs.

Social factors are holding back production (due to the war and power outages), but at the same time creating opportunities for brands that emphasize ethical production, local labor, and sustainability.

The company is actively investing in digitalization, production process optimization, and technological development. In particular, the company is considering active investment in energy-efficient technologies that reduce waste, increase efficiency, and meet environmental requirements.

P (Political)	E (Economic)	S (Social)	T (Technological)	E (Environmental)	L (Legal)
The unstable political situation is linked to Russia's armed aggression.	Utilities, wages, purchase of materials.	Focus on sports clubs	Availability of social networks, mastery of the latest technologies for displaying products, 3D models of products	Transition to waste-free production, use of virtual mannequins for fitting, cooperation with environmental volunteers	Copyright, official employment, taxes


Fig. 2 Pestel analysis

Environmental requirements are no longer a thing of the future, but a current challenge. A company like MAXsport must integrate environmental practices, including waste management, recycling, and eco-design, in order to remain responsible and competitive.

The legal framework is becoming stricter: manufacturers must take into account labeling, certification, and waste responsibility. For MAXsport, this means the need to monitor legal changes and implement internal procedures in a timely manner.

Fig. 3 SWOT analysis

Fig. 4 Green business model developed for MAXsport

As a result of the study, a green business model was developed for the sports knitwear company MAXsport (Fig. 4). Changes were made to the existing business model to enable the company to transition to green production.

References

- [1] Online store for custom sportswear. URL: <https://www.maxsport.ua/>.
- [2] Green Business Models. URL: <https://move-x.khmnu.edu.ua/course/view.php?id=8>.

ДІДЖИТАЛ-ТЕХНОЛОГІЇ ОПТИМІЗАЦІЇ ПРОЕКТУВАННЯ КІМОНО ДЛЯ БРАЗИЛЬСЬКОГО ДЖИУ-ДЖИТСУ ТА ГРЕППЛІНГУ

Dmytro Kovalchuk¹, Svitlana Kuleshova¹

¹*Khmelnytskyi National University, Khmelnytskyi, Ukraine*

*Corresponding author: kuleshovas@khmnu.edu.ua, Khmelnytskyi, 29000, Ukraine

The research presents a method for optimizing BJJ kimono design using Julivi CAD and CLO 3D. A parametric 3D model was developed to simulate material properties and verify fit under dynamic loads. The study confirms that digital prototyping significantly reduces development time and material waste while ensuring compliance with IBJJF standards. This approach streamlines customization and enhances production efficiency for high-stress sportswear.

Keywords: 3D modeling, CAD systems, virtual prototyping, kimono design.

1. Вступ

Актуальність теми: сучасний етап розвитку індустрії спортивного одягу характеризується переходом до цифрового виробництва та кастомізації. Бразильське джиу-джитсу (BJJ) та грапплінг є видами спорту з екстремальними динамічними навантаженнями на одяг та специфічною біомеханікою – робота в партері, використання одягу для захватів.

Традиційні методи конструювання та багаторазового фізичного макетування є ресурсозатратними і не дозволяють оперативно враховувати індивідуальні антропометричні особливості.

Актуальність застосування діджитал-технологій полягає у можливості перевірки посадки виробу на віртуальному аватарі з індивідуальними замірами без витрат тканини.

Мета дослідження: теоретичне обґрунтування та розробка методу оптимізації конструкції куртки кімоно для BJJ засобами сучасних систем автоматизованого проектування та 3D-моделювання для підвищення ергономічних показників виробу та скорочення часу на його розробку.

Об'єкт дослідження: процес проектування та конструкторсько-технологічної підготовки виробництва спеціалізованого спортивного одягу для боротьби.

Предмет дослідження: інструменти діджитал-технологій, методи оптимізації конструктивних параметрів куртки кімоно та їх вплив на ергономіку та міцність виробу в умовах суптички.

Методи дослідження: для вирішення поставлених завдань планується використання комплексу загальнонаукових та спеціальних методів:

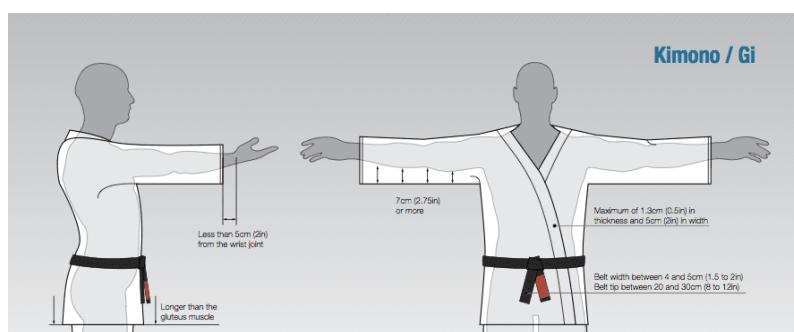
Системно-структурний аналіз для дослідження зразків кімоно та вимог міжнародних федерацій (IBJJF).

Побудова базової та модельної конструкції базового розміру засобами сапр Julivi.

Комп'ютерне 3D-моделювання у середовищі CLO 3D для побудови віртуальних прототипів, візуалізації посадки та симуляції фізичних властивостей матеріалів.

2. Результати і обговорення

Дослідження параметрів здійснено на зразках дорослого та дитячого кімоно, які надав спортивний клуб «Дамаск» м. Хмельницький (рис. 1).


Рис. 1 Зразки, надані спортивним клубом «ДАМАСК»

Після вивчення наданих зразків було зроблено висновки: комір проєктується товстим і жорстким за допомогою кількох шарів прошитої тканини та внутрішньої EVA-піни/гумової вставки. Це робить комір складним для захоплення, запобігає швидкому вбиранню вологи, зберігає форму після прання.

У лекала закладаються додаткові шари тканини або потрійні/квадро-шви в зонах високого навантаження. Посилуються пахви, плечі, область грудей, бокові розрізи куртки з додаванням ластовиць.

Міцність та плетіння тканини: Це найважливіша характеристика. Оскільки в BJJ багато захоплень і боротьби в партері, кімоно має витримувати значні навантаження.

Популярні типи плетіння: Pearl Weave (перлове), Gold Weave (золоте), Single Weave (одинарне), Double Weave (подвійне). Чим щільніше плетіння, тим міцніше (і важче) кімоно [1]. Для побудови конструкції кімоно було досліджено офіційні вимоги федерації (рис. 2) [2].

Рис. 2 Візуалізація припуків на свободу за нормативами федерації

Довжина куртки: куртка має бути достатньої довжини, щоб сягати середини стегна. Рукави мають бути максимально довгими, щоб відстань від краю рукава до зап'ястя при повністю витягнутій руці становила не більше 5 см. Відстань між краєм рукава та рукою спортсмена (при стиснутій руці) має становити від 7 см до 13 см (по всій довжині рукава). Рукави не можуть бути надто вузькими, але й не надто вільними.

Дослідження розмірної таблиці та замірів в готовому вигляді здійснено на основі українського бренду Peresvit (рис. 3) [3].

Розмір: використовується спеціальна розмірна сітка, відмінна від дзюдо або карате, найчастіше позначається латинською літерою A (Adult/Дорослий) з цифрами (наприклад, A0, A1, A2, A3, A4, A5, A6), а для дітей – M (наприклад, M0, M1, M2, M3).

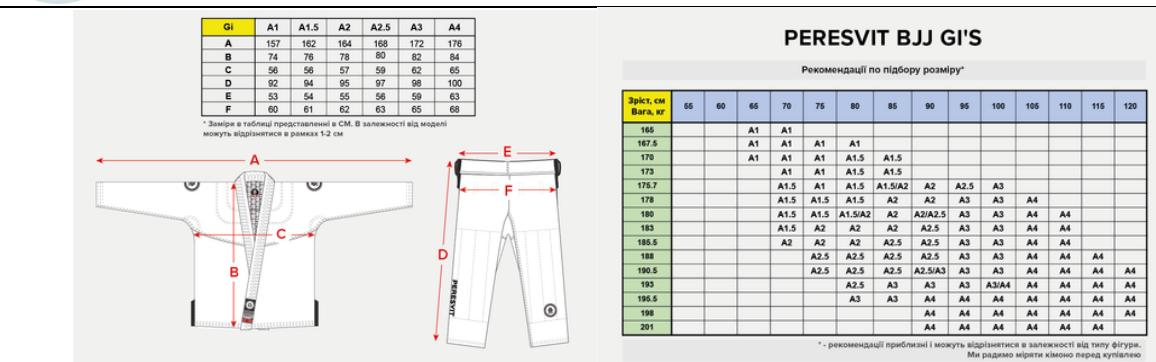


Рис. 3 Розміри кімоно українського бренду Peresvit

На основі зібраних даних було побудовано базову та модельну конструкцію лекал куртки кімоно на базовий розмір A1 в САПР Julivi (рис. 4).

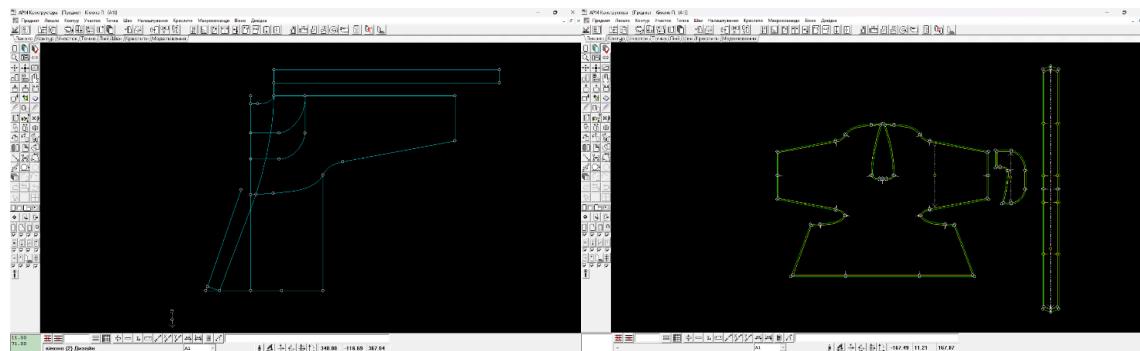


Рис. 4 Базова та модельна конструкція куртки кімоно

На основі зібраних даних було побудовано базову та модельну конструкцію лекал куртки кімоно на базовий розмір A1. Особливістю конструкції є складна просторова суцільно кроєна деталь, яка включає спинку, пілочку та рукава. Це підвищує міцність і комфорт, а також надає більше місця для нашивок. На бічних розрізах куртки внизу присутні ластовиці, які забезпечують додаткову міцність і запобігають розриву куртки при інтенсивних рухах.

В рамках реалізації практичної частини дослідження, з використанням програмного середовища CLO 3D (система віртуального моделювання одягу), створено параметричну 3D-модель куртки кімоно для бразильського джіу-джитсу (рис. 5).

Рис. 5 Комп'ютерне 3D-моделювання у середовищі CLO 3D

Створено високоточну тривимірну модель виробу, яка відтворює конструктивні особливості спеціалізованого одягу для боротьби. На зображені продемонстровано реалістичний рендер виробу, що дозволяє оцінити посадку виробу на фігури, баланс конструкції та свободу облягання, необхідну для виконання технічних дій у партері.

Враховано властивості тканини, плетіння Pearl Weave, її жорсткості та здатності до драпірування. Це підтверджує можливість оцінки фізико-механічних властивостей пакету матеріалів без виготовлення фізичного зразка.

Модель враховує специфічні вимоги до міцності екіпірування для BJJ:

Зони посилення: на візуалізації чітко простежуються конструктивні лінії та шви (зона плечей, пройми), що дозволяє перевірити технологічність складання виробу.

Бічні розрізи: опрацьовано вузол бічних розрізів для забезпечення необхідної амплітуди рухів ніг.

Це підтверджує ефективність методу для завдань кастомізації та швидкого узгодження дизайну із замовником або командою.

Висновок: розроблена 3D-модель куртки кімоно є верифікованою базою для подальшого аналізу напружено-деформованого стану та автоматичної градації лекал на різні типорозміри. Застосування даної технології дозволяє скоротити час на розробку дослідного зразка та мінімізувати витрати сировини на етапі макетування.

References

- [1] <https://bokuto.com.ua/articles/kak-podobrat-razmer-kimono/>
- [2] <https://ibjjf.com/uniform>
- [3] <https://peresvitbrand.com/uk/products/ps-kgi-core-wh>

СЕКЦІЯ 2 / SECTION 2

Сучасні матеріали та технології для промисловості, енергетики, транспорту та будівництва

Modern materials and technologies for industry,
energy, transport, and construction

PEROVSKITE CRYSTALS AS NOVEL LIGHT SOURCES: FROM THE SYNTHESIS TO APPLICATION

**Kolomiets O.^{1,2*}, Cherniukh I.^{1,2}, Morad V.^{1,2}, Zhu C.^{1,2}, Sekh T.^{1,2}, Svyrydenko M.^{1,2},
Shcherbak K.^{1,2}, Boehme S.^{1,2}, Raino G.^{1,2}, Bodnarchuk M.^{1,2}, Kovalenko M^{1,2}**

¹*Laboratory for Thin Films and Photovoltaics, Empa –*

Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

²*Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences*

ETH Zürich, Zürich, Switzerland

**Corresponding author: okolomiets@student.ethz.ch, Dübendorf CH-8600, Switzerland*

The paper reviews the synthesis and application of perovskite nanocrystals ($APbX_3$) as promising light sources. Due to their high photoluminescence, narrow spectral line and stability, these materials demonstrate potential for LED displays, quantum communications and computing. Special attention is paid to surface chemistry and superradiant properties.

Keywords: perovskite nanocrystals, photoluminescence, quantum dots, synthesis, quantum technologies, superradiance.

1. Introduction

Colloidal semiconductor nanocrystals (NCs), also known as quantum dots (QDs), are crucial materials in modern optoelectronics due to their size-tunable band gaps and high photoluminescence efficiencies. Traditional II–VI and III–V quantum dots have faced limitations, including toxicity concerns and complex synthesis, which have fueled the search for alternatives. Lead halide perovskite (LHP) nanocrystals, represented by the general formula $APbX_3$, where A includes cations such as cesium, methylammonium, formamidinium, or aziridinium, and X denotes halides, have attracted significant attention due to their exceptional optical properties and straightforward synthesis. These materials exhibit tunable photoluminescence (PL) maxima covering the entire visible spectral range, narrow PL linewidth, near-unity PL quantum yield, and high absorption coefficients [1, 2]. Owing to their excellent photophysical properties, LHP NCs are intensively studied for application in the backlights of LED displays.

Beyond conventional displays, LHP NCs emerge as critical components for quantum communication and quantum computing. The strong photon anti-bunching observed at both cryogenic and room temperature, coupled with a fast PL lifetime, long optical coherence times, and dramatically reduced spectral diffusion and blinking (compared to other colloidal NCs), enable LHP NCs to serve as high-quality single-photon emitters [3]. The ability to function effectively at room temperature is a significant practical advantage, as it circumvents the need for expensive and bulky cooling equipment typically required for traditional solid-state emitters.

2. Results and discussion

The material's strength lies in its defect tolerance – a unique electronic structure characterized by shallow defect levels. This structure prevents common defects (such as vacancies) from forming detrimental charge-trapping states deep within the band gap [2]. This electronic resilience enables the nanocrystals to retain high PL efficiency even with a relatively high concentration of structural imperfections, thereby simplifying synthetic control. In combination with low formation energy and highly dynamic surface chemistry, it opens a vast synthetic design space.

Recent developments in LHP NC surface chemistry, most notably the introduction of designer phospholipid have enabled unprecedented structural and photophysical stability down to the single-particle level [4]. These ligands protect the labile surface and inhibit unwanted degradation pathways, significantly improving stability against moisture and polar solvents. Such

advances enable the probing of the intrinsic emission properties of individual NCs with high fidelity. By increasing the size of $\text{CsPb}(\text{Br/Cl})_3$ NCs to approximately 30 nm, we achieve record-short radiative lifetimes of less than 100 ps, approaching the exciton coherence time [5]. The characteristic dependence of radiative rates on QD size, composition, and temperature suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations for the case of the giant oscillator strength. When such bright and coherent QDs are assembled into superlattices, collective properties emerge, such as superradiant emission from inter-NC coupling [6].

Our research leverages these fundamental advantages, targeting both the synthesis and application of LHPs through a focused exploration of novel synthetic approaches, post-synthetic treatments, self-assembly techniques, and precision surface modifications to enhance their performance.

References

- [1] Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. G. Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. *Nat. Mater.* 2018, **17** (5), 394–405.
- [2] Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. *Science* 2017, **358** (6364), 745–750.
- [3] Rainò, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Mahrt, R. F.; Stöferle, T. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single Photon Emission, Reduced Blinking, and Exciton Fine Structure. *ACS Nano* 2016, **10** (2), 2485–2490.
- [4] Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L. G.; Boehme, S. C.; Aebl, M.; Affolter, J.; Kaul, C. J.; Schrenker, N. J.; Bals, S. Designer Phospholipid Capping Ligands for Soft Metal Halide Nanocrystals. *Nature* 2024, **626** (7999), 542–548.
- [5] Zhu, C.; Boehme, S. C.; Feld L. G.; Moskalenko A.; Dirin D. N.; Mahrt R. F.; Stöferle T.; Bodnarchuk M. I.; Efros A. L.; Sercel P. C.; Kovalenko M. V.; Rainò G. Single-photon superradiance in individual caesium lead halide quantum dots. *Nature*, 2024, **626**, 535–541
- [6] Cherniukh I.; Rainò G.; Stöferle T.; Burian M.; Travasset A.; Naumenko D.; Amenitsch H.; Erni R.; Mahrt R. F.; Bodnarchuk M. I.; Kovalenko M. V. Perovskite-type superlattices from lead halide perovskite nanocubes. *Nature*, 2021, **593**, 535–542

BIO-INSPIRED DESIGN IN NANOROBOTICS

Mariusz Giergiel¹, Tomasz Buratowski¹, Andriy Gorban

¹*Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics
AGH University of Krakow, 30-059 Kraków, Poland*

²*Department of Morphology and Public Health Petro Mohyla Black Sea National University
68 Desantnykyy St. 10, Mykolaiv, Ukraine, 54000*

**Correspondence: giergiel@agh.edu.pl*

Fully artificial nanorobots remain unrealized, while natural molecular machines provide highly efficient models for nanoscale operation. Challenges in classical nanomechanisms highlight the value of biomimetic and hybrid approaches integrating natural and synthetic components. Such strategies may enable adaptable nanosystems with major impact on medicine, energy, and materials science. Continued advances in nanoscale design and control are expected to accelerate these developments.

Keywords: nanorobotics, biomimetics, molecular machines, hybrid nanosystems, nanotechnology.

1. Introduction

Nanorobots – particularly those envisioned as fully synthetic systems composed entirely of artificial components – remain a concept not yet realized in practice. It is therefore difficult to predict when, or even whether, such devices will emerge in the form commonly proposed in contemporary visions of nanotechnology. Nevertheless, intensive research efforts are underway in molecular engineering, synthetic biology, and nanoscale fabrication, driven by the promise of constructing molecular robots capable of performing tasks with unprecedented precision. By studying and emulating the mechanisms that govern natural processes at the nanoscale, researchers hope to develop innovative solutions that could transform entire sectors of science and industry.

Nature offers a diverse repertoire of nanoscale systems that have undergone millions of years of evolutionary optimization. Molecular machines such as motor proteins, ribosomes, ion pumps, and self-assembling macromolecular complexes demonstrate extraordinary levels of precision, adaptability, and energy efficiency. These natural nanomachines perform complex operations crucial to sustaining life, providing an unparalleled source of inspiration for designing synthetic architectures. The ability of biological systems to self-organize, repair damage, and operate under stochastic conditions highlights principles that could guide the development of engineered nanoscale devices.

The persistent challenges associated with constructing classically conceived nanorobots—those based on direct miniaturization of macroscopic mechanisms—raise important questions about the viability of such a design paradigm. Current limitations in materials science, actuation, power delivery, and control at the nanoscale suggest that a purely mechanical approach may not be the most effective route. Instead, leveraging principles intrinsic to natural nanosystems may provide a more promising trajectory. By adopting biomimetic strategies, future nanorobots may be not only more functional and robust but also inherently more sustainable and responsive to environmental cues.

2. Results and discussion

Consequently, a hybrid strategy has gained increasing attention: one that integrates biological components, molecular building blocks, or biomimetic design principles with emerging synthetic mechanisms. Such an approach serves as a transitional pathway toward fully artificial nanosystems, enabling researchers to utilize the strengths of nature while overcoming the constraints of purely synthetic constructs. This convergence of biological inspiration and engineered design is beginning to shape the research landscape, bringing the field closer to the development of functional nanomachines.

As advances in nanorobotics accelerate, the role of biologically inspired design will undoubtedly remain central. The combination of technological innovation and evolutionary insight offers the potential to create systems capable of addressing challenges that lie beyond the reach of traditional engineering. Applications in targeted drug delivery, regenerative medicine, energy harvesting, and advanced materials illustrate the transformative possibilities of nanoscale devices built on hybrid or biomimetic principles.

With increasing understanding of nanoscale structures and molecular mechanisms, the prospect of constructing entirely synthetic nanomachines is gradually becoming more tangible. Designing such systems from the bottom up—using natural or engineered molecular components as functional units – opens pathways toward capabilities that surpass those found in biological organisms. At the same time, integrating biological and artificial modules enables the creation of hybrid nanosystems with tunable properties and application-specific functionality.

Despite these opportunities, significant challenges remain. The design, assembly, and control of nanoscale systems require sophisticated tools, precise modeling, and a deep understanding of both physical and biochemical processes. Advances in nanofabrication, molecular simulation, microscopy, and autonomous control architectures are essential to overcoming these barriers. As these enabling technologies mature, the potential applications of synthetic and hybrid nanomachines continue to expand. We are therefore entering a pivotal era in nanotechnology, in which

fundamental insights from biology intersect with the capabilities of modern engineering. This synthesis has the potential to redefine not only how we design and build nanoscale systems but also how we approach some of the most pressing scientific and societal challenges. From medicine to energy and materials science, the emergence of functional nanorobots – whether biological, synthetic, or hybrid – could mark the beginning of an entirely new technological paradigm.

СОНЯЧНА ПАНЕЛЬ LONGi SOLAR LR7-54HTH-465M: КОНСТРУКТИВНІ ОСОБЛИВОСТІ, КРИСТАЛІЧНА СТРУКТУРА ТА ТЕХНОЛОГІЧНІ ІННОВАЦІЇ

Віталій Кульбаченко, Артур Горбовий

Державний податковий університет, м. Ірпінь, Україна

The paper examines the structural design, crystalline properties and technological innovations of the LONGi Solar LR7-54HTH-465M photovoltaic module. Key features include monocrystalline silicon cells, HPBC rear-contact architecture, Half-Cell configuration and Multi-Busbar technology, which together enhance efficiency, reduce losses and ensure long-term reliability for modern solar energy systems.

Keywords: monocrystalline silicon; HPBC technology; Half-Cell; Multi-Busbar; photovoltaic module.

1. Вступ

Стрімкий розвиток сонячної енергетики зумовлює потребу у високоефективних фотомодулях, здатних працювати в умовах зростаючих енергетичних навантажень, мінливого клімату та обмеженої площині розміщення. Одним із провідних виробників фотовольтаїчної продукції є компанія LONGi Solar, яка спеціалізується на виготовленні монокристалічних кремнієвих модулів із підвищеною ефективністю. Модель LR7-54HTH-465M, що належить до серії Hi-MO X6 Explorer, є прикладом поєднання сучасної напівпровідникової фізики, оптимізованої конструкції та технологій зниження внутрішніх електрических втрат. Висока вихідна потужність 465 Вт у поєднанні з ККД до 22,8 % роблять цей модуль оптимальним рішенням для приватних, комерційних і промислових сонячних електростанцій.

2. Результати та обговорення

Кристалічна структура та фізичні властивості монокристалічного кремнію. Основою фотомодуля LR7-54HTH-465M є монокристалічні кремнієві осередки, які традиційно виготовляються методом Чохральського. У процесі вирощування утворюється злиток кремнію з однорідною кристалічною решіткою та мінімальною кількістю структурних дефектів. Це визначає низку властивостей:

- *Однорідність кристалічної тратки.* Відсутність меж зерен знижує ймовірність рекомбінації носіїв заряду, оскільки електрони та дірки не «втрачаються» на дефектних ділянках;
- *Висока рухливість електронів.* Монокристалічний кремній забезпечує більшу швидкість транспортування носіїв, що позитивно впливає на струм короткого замикання та напругу холостого ходу;
- *Зменшена густина пасток та дислокацій.* Чим менше структурних дефектів, тим довший час життя носіїв заряду і тим вищий потенційний коефіцієнт корисної дії;
- *Стабільність електрических параметрів у часі.* Монокристалічні елементи мають кращу довговічність порівняно з полікристалічними завдяки однорідній структурі й кращій стійкості до термічних циклів.

На поверхню кремнієвих пластин наносять антиблікове покриття – найчастіше нітрид кремнію (SiN_x), який формує інтерференційний шар, що зменшує відбиття світла та збільшує оптичне поглинання. Завдяки цьому панель ефективно працює навіть при низькому рівні освітлення, зокрема вранці, ввечері або за хмарності.

Технології *Half-Cell* та *Multi-Busbar*: зниження резистивних втрат. *Half-Cell* (напівелементи). У модулі LR7-54HTH-465M використано 108 напівелементів, що є результатом розділення класичних 54 повнорозмірних осередків. Така конструкція має низку переваг:

- Зменшення робочого струму кожного осередку удвічі. Оскільки втрати на нагрівання пропорційні квадрату струму, його зменшення у два рази знижує резистивні втрати у 4 рази.
- Зменшення внутрішнього нагріву. Осередки працюють при нижчій температурі, що сприяє стабільнішій роботі модуля.
- Покращена робота при частковому затіненні. Оскільки модуль поділений на три паралельні секції, у разі затінення лише частини осередків робочі характеристики погіршуються менше, ніж у класичних модулів. Ця конструкція підвищує реальний енергетичний вихід та зменшує деградацію компонентів, пов'язану з локальним перегрівом.

Multi-Busbar (MBB) – система багатошинного з'єднання передбачає розподіл контактів на значно більшу кількість тонких металевих провідників.

Переваги MBB:

- менше електричне затінення поверхні осередку;
- зниження серійного опору;
- підвищення стійкості до мікротріщин (струм може оминати пошкоджену ділянку);
- підвищена довговічність та менше термічне навантаження.

У комплексі ці технології забезпечують стабільний приріст потужності в реальних умовах експлуатації.

Архітектура HPBC (Hybrid Passivated Back Contact): оптимізація фотонного потоку. Важливою конструктивною особливістю моделі LR7-54HTH-465M є застосування HPBC – технології гібридного пасивованого тильного контакту.

Її основна суть полягає в тому, що частина струмознімальних елементів переноситься на задню поверхню комірки. Це приносить ключові ефекти:

- *Мінімізація затінення передньої поверхні.* Відсутність або зменшення металевих провідників спереду підвищує поглинання світла.
- *Зниження рекомбінаційних втрат.* Пасиваційний шар на задній стороні зменшує кількість дефектів і пасток для носіїв заряду, збільшуєчи струм короткого замикання.
- *Підвищення вихідної напруги.* Завдяки оптимізованому р-п переходу та зниженні рекомбінації підвищується робоча напруга (Voc).

HPBC-технологія є одним із найефективніших сучасних підходів до побудови кремнієвих фотомодулів без зміни базового матеріалу.

Технічні параметри та електричні характеристики за даними офіційного даташиту, панель має такі електричні характеристики (STC):

- Потужність (P_{max}) – 465 Вт.
- ККД – до 22,8 %.
- V_{mp} – ≈ 33.39 В.
- I_{mp} – ≈ 13.93 А.
- V_{oc} – ≈ 39.55 В.
- I_{sc} – ≈ 14.93 А.

Температурні коефіцієнти:

- P_{max} – $-0.28\text{ \%}/^{\circ}\text{C}$.
- V_{oc} – $-0.23\text{ \%}/^{\circ}\text{C}$.
- I_{sc} – $+0.05\text{ \%}/^{\circ}\text{C}$.

Фізичні характеристики:

- Розміри – 1800 × 1134 × 30 мм.
- Маса – 21,6 кг.
- Скло – 3,2 мм загартоване з антибліковим покриттям.
- Механічна міцність – 5400 Па (лицьова сторона), 2400 Па (тильна).

Довговічність та гарантії виробника, виробник надає:

- 15-річну гарантію на виріб,
- 25-річну гарантію на збереження потужності, де через 25 років вона має становити $\geq 89,4\%$ номінальної.

Допуск потужності 0...+3 % означає, що модуль завжди видає номінальну або більшу потужність, що є важливою ознакою якісного виробництва.

Практичне застосування і переваги. Модель LR7-54HTH-465M добре підходить для:

- дахових приватних систем (обмежена площа, високий ККД).
- бізнес-об'єктів (склади, ТРЦ, офіси).
- промислових СЕС.
- гібридних систем з акумуляторами.
- систем із частковим затіненням (Half-Cell + MBB).

Панель демонструє стабільну роботу за низького освітлення та ефективно працює при високих температурах завдяки низьким температурним коефіцієнтам.

Висновки. Сонячна панель LONGi LR7-54HTH-465M є високотехнологічним рішенням нового покоління, що поєднує монокристалічний кремній із передовими інженерними підходами до зменшення внутрішніх втрат. Технології HPBC, Half-Cell та Multi-Busbar забезпечують підвищено ефективність використання світлового потоку, покращену поведінку при затіненні, знижені теплові втрати та довготривалу стабільність вихідних параметрів. Завдяки високому ККД, міцній конструкції та розширеним гарантійним зобов'язанням дана модель є перспективним вибором для довготривалих сонячних електростанцій, де важливі енергоефективність, надійність та максимальний вихід енергії на одиницю площини.

Список використаних джерел

[1] LONGi Solar. LR7-54HTH-455–465M Hi-MO X6 Explorer. Datasheet. Офіційна технічна специфікація виробника. URL: https://static.longi.com/LR_7_54HTH_455_465/M_30_30_and_15_Frame_Explorer_20240511_V2_86a1a64e12.pdf

[2] LONGi Solar. Hi-MO X6 Explorer Product Brochure. Опис технологій HPBC, MBB, Half-Cell. URL: <https://www.longi.com/en/products/modules-series/hi-mo-x6/>

[3] ENF Solar – Worldwide Solar Product Directory. LONGi LR7-54HTH-465M -Technical Specifications. Міжнародна база даних сонячних панелей з верифікованими параметрами. URL: <https://www.enfsolar.com/pv/panel-datasheet/crystalline/66234>

[4] Sun-Energy (Україна). LONGi Hi-MO X6 Explorer LR7-54HTH-455–465M – URL: https://sun-energy.com.ua/image/pdf/LONGi_Hi-MO_X6_Explorer_LR7-54HTH-455-465M-Datasheet-UA.pdf

[5] Deps Energy (Україна). Картка товару «Сонячна панель LONGi LR7-54HTH-465M». Містить сертифікації, конструктивні характеристики та підтвердження технологій MBB/HPBC. URL: <https://deps.ua/katalog/solar-panels/48429.html>

POLYMER COATINGS FOR MILITARY APPLICATIONS

Norbert Radek^{1,2*}, Marek Michalski^{1,2}

^{1,2}*Kielce University of Technology,*

Faculty of Mechatronics and Mechanical Engineering, Kielce, Poland

^{1,2}*Barwa Kielce Company, Kielce, Poland*

*Corresponding author: norrad@tu.kielce.pl, Al. 1000-lecia P. P. 7,25-314 Kielce

This paper presents the results of experimental testing of coating systems for military applications. The evaluation of properties was based on microstructure analysis and measurements of surface geometry, adhesion, and hardness. The tests were conducted for two-layer masking coating systems made in three variants: a coating system (SP1), a coating system modified with carbon nanotubes (SP2), and a coating system modified with glass microspheres (SP3). The paint coating systems were applied by pneumatic spraying onto DC01 steel samples using SATA spray guns. Due to their properties, the paint systems are suitable for use on military equipment and vehicles.

Keywords: camouflage, coatings system, properties, military equipment.

1. Introduction

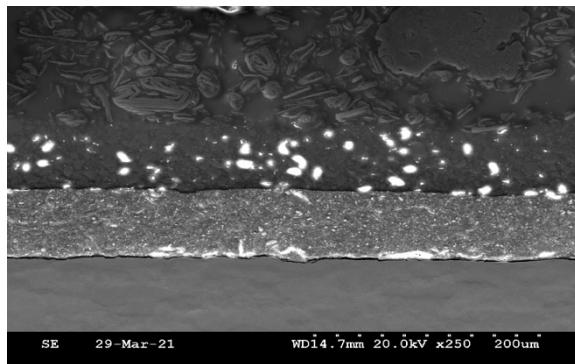
The properties of the surface layer affect the service life of machines and devices. The surface fundamentally affects the functional properties of objects and products. This is important both for quality reasons and in connection with the durability of protected objects, especially important in terms of the circular economy, resulting from, among others, increasingly stringent energy, production, and consumption limitations. Regardless of this, research related to the surface layer significantly influences the development of technology and materials, including socially important biomaterials. Several physicochemical phenomena, such as chemical catalysis, corrosion, wear (abrasive, adhesive, abrasive-adhesive, erosive, cavitation, fatigue), adhesion, adsorption (physical and chemical), flotation, depend on and occur on the surface of the material or with its participation. The operational durability of the surface layer depends on many complex structural, operational, and material factors, which include, among others:

- chemical and phase composition, microstructure, and mechanical properties of the material, state and values of residual stresses, crack resistance, and corrosion resistance.
- conditions and type of operation.
- method and nature of loading.

Currently, there is a dynamic development of coating production processes using various surface engineering technologies. The process of evolution of paint coatings is interesting. It is very fast and multidirectional [1]. The progress in the field of polymer coating technology is caused by three of the most important functions. i.e., decorative [2], protective [3], and information [4]. A special group of paint coatings is paint coating systems for military applications, mainly for masking weapons and military equipment [5].

The paper presents the results of operational tests of paint coating systems developed using carbon nanotubes and glass microspheres. The current research includes analysis of the microstructure and measurements of the geometric structure of the surface, adhesion, and hardness.

2. Materials


The specimens with dimensions of 150 mm × 100 mm × 1 mm were made of low-carbon steel DC01. The steel samples were first washed with XPA10006 remover to degrease the surfaces. Then, a grinding operation was performed using a rotary machine and P80 grit sandpaper. The final stage of surface preparation was washing the surface with XPA10006 solvent. Masking coating systems were applied in a Blowtherm spray booth and using SATA guns. Masking coating systems were applied by air spray in three options:

- paint system (SP1): primer coating BP450-100/N, masking coating BW400-6031,

- paint system (SP2): primer coating BP450-100/N, masking coating BW400-6031 + carbon nanotube modification (0.02 % by weight),
- paint system (SP3): primer coating BP450-100/N, masking coating BW400-6031 + modification with glass microspheres (2.4 % mass share).

3. Results and discussion

A microstructure analysis was conducted for masking coating systems using the HITACHI S-3500N scanning electron microscope. The thickness of the obtained masking paint systems for military facilities was from approx. 141 to approx. 157 μm . Figure 1 shows an example of the SP2 masking system. Analysis of the microstructure of the masking systems confirmed clear boundaries between individual layers, the paint system, and the steel substrate. It was also found that the masking paint systems were free from structural defects. i.e., microcracks and pores.

Fig. 1 Microstructure of the SP2 masking system

A scratch test was conducted to test the adhesion of the paint systems without putty. Adhesion tests were conducted using the Revetest Scratch Xpress instrument (CSM Instruments, Switzerland). The measurements were performed at a load increase rate of 11 N/min, a table feed rate of 4.49 mm/min, and a scratch length of 20 mm.

A special Rockwell diamond cone indenter with a corner radius of 200 μm was used to scratch the samples at a gradually increasing normal load. The information about the cracking or peeling of layers was obtained based on the measurements of the material resistance (tangential force) and the registration of acoustic emission signals. The lowest normal force causing a loss of adhesion of the coating to the substrate is called a critical force and is assumed to be the measure of adhesion.

From the obtained data, it becomes evident that coating systems have good adhesion with the substrate material. The mean value of the critical force calculated from three measurements performed on the individual masking coating systems was from 41.38 to 46.49 N. In addition, the low scatter of critical stylus loads indicates that the layers are homogeneous and very tight.

The hardness and elastic modulus were investigated using the nanoindentation technique. This measurement technology was possible due to the development of instruments that continuously measure force and displacement. In the measurement, the load force was 20 mN, and the unload rating was 40 mN/min due to the type of material tested, which used creep for about 5 seconds. The hardness is determined by the penetration depth of the indenter, and the modulus of elasticity is determined by the slope of the unload curve. Hardness measurements were carried out in several selected places on the surface of the paint coating. On the basis of 10 measurements, the values of average hardness and elasticity modulus were determined. Tab. 1 contains the average values of hardness and elastic modulus, together with the standard error.

The highest nanohardness was found in steel DC01, and it amounted to 9.7 GPa. The Young's modulus was also the highest for low-carbon steel DC01, and its value was at the level of 121 GPa.

Table 1 Value of hardness and modulus of elasticity with errors

Coating systems/material	Hardness [GPa]	Elastic modulus [GPa]
SP1	0.335 ± 0.003	7.637 ± 0.021
SP2	0.216 ± 0.008	5.394 ± 0.053
SP3	0.302 ± 0.005	5.859 ± 0.037
steel DC01	9.700 ± 0.800	121.00 ± 5.200

Analyzing the data included in Tab. 1, it can be concluded that all paint coatings had similar nanohardness values. The nanohardness measured on the surface of the coating systems was in the range of 0.216 GPa to 0.302 GPa. A similar analogy can be observed when analyzing the values of Young's moduli for the tested paint layers (Tab. 1). The highest value of the longitudinal elasticity modulus was found in the SP1 paint system in relation to the other two coating systems. The Young's modulus measured on the surface of the masking system was 7.637 GPa.

Measurements of surface geometric structure (SGS) were carried out at the Laboratory of Computer Measurements of Geometric Quantities of the Kielce University of Technology. Tests were performed using a Talysurf CCI optical profilometer using the coherent correlation interferometry method, enabling a resolution of 0.01 nm with a z-axis resolution. The measurement result is recorded in a matrix of 1024×1024 measuring points using the $\times 10$ lens, giving a measured area of $1.65 \text{ mm} \times 1.65 \text{ mm}$ and a horizontal resolution of $1.65 \mu\text{m} \times 1.65 \mu\text{m}$. Ten measurements were made on samples of coating systems and steel DC01, allowing averaging of the results. Tab. 2 summarizes the most important SGS parameters of the tested masking coating systems.

Table 2 Averaged parameters of the surface geometric structure of coating systems

SGS Parameters	Masking coating systems		
	SP1	SP2	SP3
Sq [μm]	2.841	3.110	3.949
Ssk	-0.217	-0.169	0.393
Sku	3.285	2.954	3.565
Sp [μm]	29.616	18.150	22.781
Sv [μm]	50.238	21.323	30.112
Sz [μm]	79.853	39.473	52.893
Sa [μm]	2.272	2.486	3.111

The tested coating systems had an average mean arithmetic surface roughness deviation from the average surface area $Sa = 2.272\text{-}3.111 \mu\text{m}$. Samples of steel DC01 sanded with P80 grain sandpaper on which coatings were applied had $Sa = 0.798\text{-}0.883 \mu\text{m}$. Parameter Sa is the basic amplitude parameter for quantifying the state of the surface being analyzed. A similar trend in the measurement of paint coatings and low-carbon steel was observed for the quadratic surface roughness Sq , which has a strong correlation with the Sa parameter. Additional information on the surface shape of the tested modifications is provided by the amplitude parameters: skewness coefficient Sku and the concentration coefficient Ssk . These parameters are sensitive to the occurrence of local elevations or depressions on the surface, including defects. The obtained kurtosis values close to $Sku = 3$ indicate that the ordinate distribution for all samples is close to the normal distribution. The highest value was obtained for the modification of the masking system with glass microspheres. Analyzing Tab. 2 it results that only the SP3 paint system had a positive value of the surface asymmetry coefficient Ssk (skewness), which indicates that we are dealing with a smooth surface devoid of deep scratches. The coating without modification (SP1) and the coating modified with carbon nanotubes (SP2) had negative Ssk values, which indicated rather a plateau

shape of these surfaces in comparison to the coating modified with glass microspheres (SP3). The lowest value of the Ssk parameter was measured for the SP1 coating system.

Conclusions

- As a result of the microstructure analysis, it was found that the paint systems were free from pores and microcracks.
- The two-layer coatings were characterized by good mechanical properties.
- Masking coating systems had higher parameters of the geometric structure of the surface in relation to the substrate material (more than three times).
- The SP3 painting system had a positive value of the surface asymmetry coefficient Ssk , which indicates that we are dealing with a smooth surface without deep scratches.

References

- [1] Kotnarowska, D.: Powłoki ochronne. Wydawnictwo Politechniki Radomskiej, Radom, 2010.
- [2] Selvakumar, N., Barshilia, H. C., Rajam, K. S.: Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetra-fluoroethylene coatings: A comparison of experimental data with different theoretical models. *Journal of Applied Physics*, Vol. 108, art. 013505, 2010. <https://doi.org/10.1063/1.3456165>
- [3] Kotnarowska, D.: Analysis of polyurethane top-coat destruction influence on erosion kinetics of polyurethane-epoxy coating system. *Eksplotacja i Niezawodność – Maintenance and Reliability*. Vol. 1, No. 21, pp. 103–114, 2005. <https://doi.org/10.17531/ein.2019.1.12>
- [4] Malshe, V. C., Sangaj, N.: Fluorinated acrylic copolymers Part I: Study of clear coatings. *Progress in Organic Coatings*, Vol. 53, pp. 207–211, 2005. <https://doi.org/10.1016/j.porgcoat.2005.03.003>
- [5] Radek, N., Michalski, M., Mazurczuk, R., Szczodrowska, B., Plebankiewicz, I., Szczepaniak, M.: Operational tests of coating systems in military technology applications. *Eksplotacja i Niezawodność – Maintenance and Reliability*, Vol. 25, No. 12, pp. 1–13, 2023. <https://doi.org/10.17531/ein.2023.1.12>

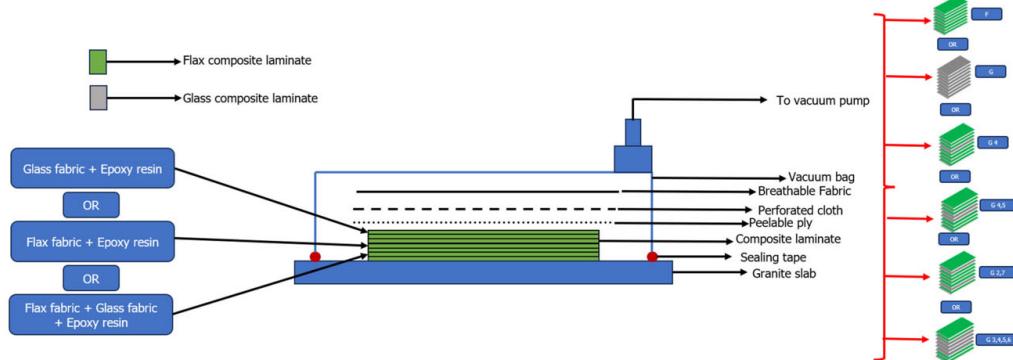
NUMERICAL MODELLING OF HYBRID COMPOSITES FOR SELECTED AUTOMOTIVE PARTS

Akshat Tegginamath^{1*}, Michal Petru¹

¹Technical University of Liberec, Liberec, Czech Republic

*Corresponding author: akshat.tegginamath@tul.cz, Liberec, 46117, Czech Republic

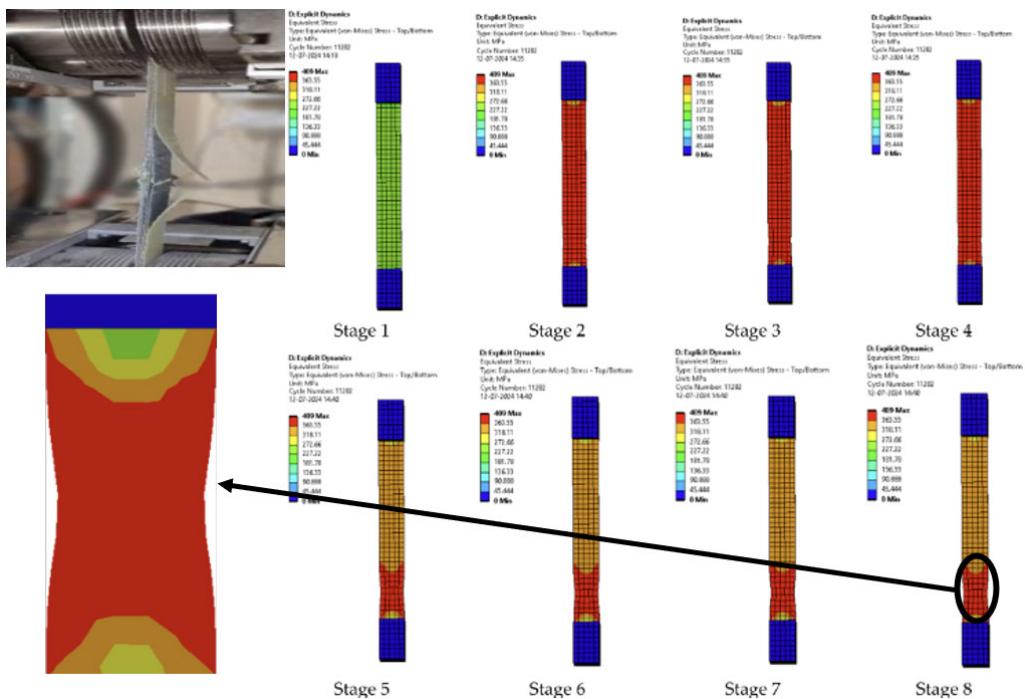
Over the recent years development of composites has taken a huge leap forward and one of the main contributing factors for this is the reduction in weight achieved along with retaining equal or greater levels of mechanical properties compared to conventional materials. Environmental awareness has taken center stage in the past few years making eco-friendliness an important requirement of every new development, to adapt to this new requirement the composites can be made as hybrid composites where natural fibers can be used as reinforcements. In this study hybrid composites made from flax and glass fibers are evaluated for their mechanical properties and the results obtained are compared with the results obtained via simulations, along with this effect of the stacking sequence on the properties was also studied.

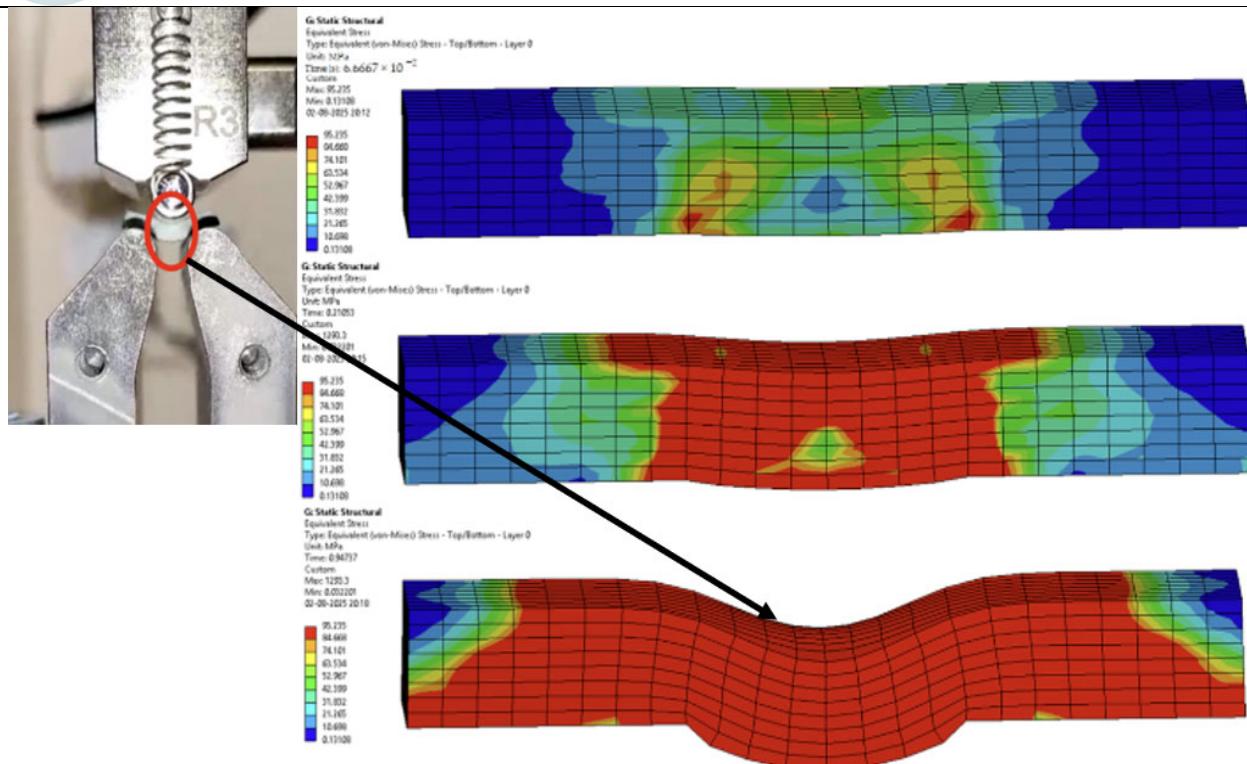

Keywords: S-Glass, Flax, Numerical Modelling, Tensile Strength, ILSS, Impact.

1. Introduction

The internal components and frames of automobiles, traditionally have been made from metals. The overall weight of the automobile increase with the utilisation of metals for the internal structures and frames. To reduce the weight and to stay relevant with the concept of eco-

friendliness, the metal frames and internal structures can be replaced with fiber-reinforced composites which are light weight and also offer a high degree of stiffness. The usage of these composite in the trasnportaion industry can lead to an increase in the efficiency due to the reduction of the overall weight of the automobile [1]. In the recent past the, there has been increase in the interest in utilising sustainable natural materials in making composites where they can be used as reinforcing materials [2–4]. And compotes materials in general have a the unique advantage that, the composites can be made according to the properties that are required by the end user.


Hybrid composite laminates made from flax and glass fabrics were made using the process of vaccumm bagging as shown in Fig. 1 were tested for their tensile strength, ILSS and low velocity drop weight impact strength.


Fig. 1 Vaccumm bagging process

2. Results and discussion

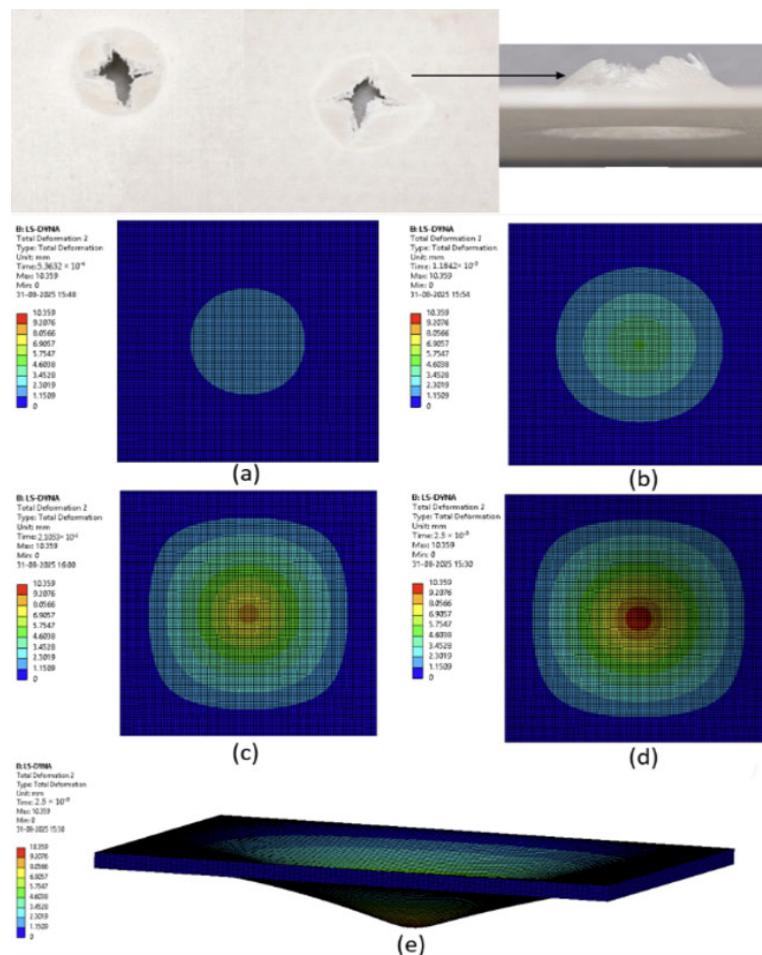

The results of the tentile testing conducted on the laminates were compared with the results obtained from performing the simulations. The results from both testing and simulations showed that the as the number of layers of glass fabric increased the strength of the laminates increased, it was also obsereve that the strength of the laminates with glass layers in the core was slightly higher than that of the laminate which had layers of glass as their penultimate layers. And also it was seen that there was percentage difference of 4.05 % to 8.05 % between the values obtained by testing and the values obtsined via simulations.

Fig. 2 Tensile testing and simulation

Fig. 3 ILSS Testing and simulation

Fig. 4 Low velocity drop weight impact testing and simulations

The composite laminates were tested for their inter laminar shear strength and the inter laminar shear strength for the samples were also simulated. The results of the tests conducted and the simulations showed that the inter laminar shear strength increased with the increase in the number of glass layers but the interlaminar shear strength of the laminates with glass fabric as their penultimate layer was slightly higher than that of the laminates with the glass layers in the core. Upon comparing the results obtained by testing to the results obtained via simulations it was found that there was a percentage error ranging from 0.106 % to 6.25 %.

The results of the low velocity drop weight impact strength of the laminates obtained by testing were compared with the results obtained via simulations. From both the simulations and tests it was observed that the impact strength increased with the increase in the number of glass layers which meant that the ability to absorb the force due to the impact increased. It was also noted that the samples with the glass fabrics in the core showed a lower strength than the samples with the glass fabrics in the penultimate layers. Upon comparing the results obtained from testing to the results obtained via the simulations it was seen that there was percentage difference ranging from 0.06 % to 17.14 % for the maximum force at which the composite laminate would break.

From the results that were obtained for each of the tests which were conducted it can be clearly seen that a purely natural fiber based composite has lower values when compared to a composite with just one layer of glass fabric, and when we take look at the results of the composites with various iterations of stacking of the glass and flax fabrics it can be seen that mechanical properties were effected by the sequence of stacking.

References

- [1] Akshat, T.; Petru, M.; Mishra, R. K. Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties. *Polymers* 2025, *17*, 168.
- [2] Akshat, T.; Petru, M.; Mishra, R.K. Inter Laminar Shear Strength of Flax-Glass Hybrid Polymer Composites for Automotive Frame: Numerical Modelling and Experimental Analysis. *Materials* 2025, *18*, 3852. Topol, EJ. Chapter 6: Doctors and Patterns In: Deep medicine: artificial intelligence can make healthcare human again. Basic Books: London, pp. 111–135, 2019.
- [3] Mishra, R. K.; Behera, B. K.; Chandan, V.; Nazari, S.; Muller, M. Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. *Polymers* 2022, *14*, 4108.
- [4] Vijayan, D.S.; Sivasuriyan, A.; Devarajan, P.; Stefańska, A.; Wodzyński, Ł.; Koda, E. Carbon Fibre-Reinforced Polymer (CFRP) Composites in Civil Engineering ApplicationA Comprehensive Review. *Buildings* 2023, *13*, 1509.

KEVLAR FIBER-REINFORCED POLYMER COMPOSITES FOR ADDITIVE MANUFACTURING (3D PRINTING)

Andrii Polishchuk¹, Oleh Polishchuk^{2*}, Miroslaw Bonek³, Artem Tolstiuk⁴

^{1, 2, 4}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

³*Silesian University of Technology, Poland*

*Corresponding author: opolishchuk71@gmail.com, Khmelnitskyi, 29008, Ukraine

This paper provides a concise overview of Kevlar (aramid) fiber reinforcement in polymer composites for FDM/FFF additive manufacturing. The influence of short Kevlar fibers on mechanical strength, impact resistance and layer adhesion is analyzed. Their advantages for lightweight structural components and tribological applications are highlighted.

Keywords: Kevlar fiber, aramid composites, additive manufacturing, FDM/FFF, mechanical properties.

1. Introduction

The growing use of additive manufacturing increases the need for polymers with higher strength and durability. Although ABS, ASA and polyamides are common in FDM/FFF printing due to their ease of processing, their brittleness and tendency to delaminate limit their use in functional, load-bearing components. Reinforcing polymers with short fibers is an effective way to overcome these limitations by improving stiffness, strength and toughness at both the microstructural and macroscopic levels [1].

Kevlar (aramid) fibers offer high tensile strength, low density, excellent energy absorption and abrasion resistance. Their highly fibrillar structure enables efficient stress redistribution within the composite, which increases fracture toughness and impact resistance and makes aramid fiber-reinforced plastics attractive for demanding structural applications [1]. When introduced in the form of chopped fibers compatible with extrusion-based printing, Kevlar can significantly enhance the performance of printed parts without major hardware modifications, as demonstrated for ABS-based composites reinforced with carbon and Kevlar fibers by material-extrusion 3D printing [2].

In addition to strengthening effects, Kevlar fibers contribute to better layer-to-layer adhesion, reduced thermal distortion and improved tribological behavior, which are critically important for parts with complex geometries, precision mechanisms and low-lubrication machine elements [1, 2]. The combination of mechanical robustness and environmental resistance broadens the operational window of Kevlar-reinforced composites for components subjected to dynamic loading, temperature fluctuations and chemically aggressive environments [1, 3].

Modern screw-extrusion 3D printing, where polymer granules are continuously melted, mixed and deposited, enables higher fiber loading and better dispersion than filament-based systems. This approach creates opportunities for hybrid Kevlar–carbon fiber reinforcement, combining the stiffness of carbon fibers with the toughness of aramids in a single material system [1, 2].

Thus, the use of chopped Kevlar fibers and hybrid Kevlar–carbon fiber systems in additive manufacturing is a promising direction for developing next-generation composites with improved mechanical, thermal and tribological properties suitable for industrial, aerospace, transport and robotic applications [1–3].

2. Results and discussion

Research shows that the introduction of short Kevlar fibers into ABS, ASA or polyamide matrices significantly improves impact resistance, layer bonding and overall fracture toughness. Due to the highly fibrillar microstructure of aramid fibers, mechanical stress is redistributed more uniformly within the polymer matrix, which reduces crack propagation speed and increases the energy absorbed during fracture [1,3]. Experimental studies on ABS-based composites with short carbon and Kevlar fibers produced by material-extrusion 3D printing demonstrate simultaneous enhancement of flexural strength and ductility under optimized printing conditions, confirming the effectiveness of short-fiber reinforcement for load-bearing printed parts [2]. The typical mechanical and physical characteristics of Kevlar fibers that underlie these reinforcing effects are summarized in Table 1 [1, 3].

Table 1 The mechanical and physical characteristics of Kevlar fibers

No n/a	Indicator	ABS-Kevlar
1	Density	1.44 g/cm ³
2	Tensile strength	≈ 3.6 GPa
3	Young's modulus	70–112 GPa
4	Elongation at break	2.5–4.0 %
5	Thermal decomposition	400–500 °C
6	Moisture absorption	3–7 %
7	Specific strength	~2500 kN·m/kg

The reinforcing effect of Kevlar fibers is closely related to their ability to form micro-scale energy dissipation mechanisms. Under impact or cyclic loading, aramid fibrils undergo stretching, micro-splitting and gradual pull-out, which all contribute to increased toughness and inhibit rapid crack growth [1, 3]. As a result, Kevlar-reinforced composites exhibit improved long-term durability and can sustain repetitive stresses without notable degradation. Another important advantage is the substantial improvement of interlayer adhesion in FDM fabrication: short fibers partially penetrate boundaries between adjacent layers, forming micro-bridges that mechanically interlock the structure and significantly reduce delamination, a typical weakness of FDM-produced parts [2]. Reinforced regions demonstrate increased resistance to shear, bending and torsional stresses, which is particularly valuable for components with complex geometry or orientation-sensitive loading [2].

Kevlar fibers also improve dimensional stability and reduce thermal distortion during printing. Their low coefficient of thermal expansion compensates polymer shrinkage during cooling, thereby decreasing warping and improving the dimensional accuracy of printed parts [1]. High thermal resistance allows Kevlar-reinforced composites to operate at elevated temperatures, while maintaining mechanical performance under thermal cycling, which is critical for aerospace and transport applications [1, 3]. Tribological performance is another area where Kevlar provides a pronounced advantage. Owing to their excellent abrasion resistance, aramid fibers reduce friction and wear at sliding interfaces, and Kevlar-based laminates and hybrids show stable wear behavior under repeated loading [1, 3]. This makes such composites suitable for bearings, bushings, mechanical guides and other elements operating with limited lubrication or under dry friction conditions.

Environmental and chemical resistance is also improved by Kevlar reinforcement. Aramid fibers maintain their properties under moisture, solvents, UV radiation and atmospheric degradation, allowing composites to retain mechanical performance in outdoor or chemically demanding conditions [1, 3]. At the same time, the interfacial region between the relatively inert aramid surface and polymer matrix remains a critical factor: weak adhesion can limit stress transfer and promote delamination. Recent studies therefore focus on enhancing fiber–matrix adhesion through surface treatments, coupling agents and nanofillers introduced into the matrix. For example, the incorporation of modified aluminosilicates into Kevlar/epoxy laminates leads to notable increases in tensile, flexural and in-plane shear strength (by up to 30–40 %), due to improved matrix stiffness and better stress transfer at the fiber–matrix interface [3].

In the context of 3D printing, optimization of process parameters – such as nozzle temperature, extrusion rate, bed temperature and infill strategy – further improves fiber alignment and dispersion in short-fiber-reinforced systems [2]. ABS-based composites containing short Kevlar fibers show strong dependence of flexural properties on raster orientation and build direction; appropriately chosen $\pm 45^\circ$ raster patterns provide a better balance between stiffness, toughness and energy absorption, compared to conventional $0^\circ/90^\circ$ layouts [2]. This sensitivity to process conditions indicates that Kevlar reinforcement is most effective when combined with careful control of printing strategy and part architecture.

A promising direction for further development is the creation of hybrid composites that combine both Kevlar and carbon fibers. In ABS-based hybrids, short Kevlar fibers compensate for the brittleness of carbon fibers by improving ductility and energy absorption, while carbon fibers significantly increase stiffness and strength, leading to balanced flexural behavior [2]. Similar synergy is observed in epoxy-based hybrids where carbon–Kevlar reinforcement enhances both mechanical and interfacial properties [1]. For extrusion-based 3D printing, especially screw-extrusion systems processing polymer granules, such hybrid reinforcement concepts can be extended toward higher fiber loadings and more uniform dispersion compared to filament-type processes [1, 2].

Overall, short Kevlar fibers significantly enhance the mechanical, thermal, tribological and environmental performance of polymer composites used in FDM/FFF and screw-extrusion 3D printing. Their ability to redistribute stresses, improve fracture toughness, increase interlayer bonding and stabilize materials under challenging conditions makes them highly effective for

engineering applications. Furthermore, the development of hybrid Kevlar–carbon fiber composites opens additional opportunities for optimizing stiffness-to-toughness ratios and enabling new functional capabilities in high-strength additive manufacturing, supporting broader adoption in transportation, aerospace, machinery and robotics [1–3].

References

- [1] Xu X., Guo Y., Shen Z., Liu B., Yan F., Zhong N. Aramid Fiber-Reinforced Plastics (AFRPs) in Aerospace: A Review of Recent Advancements and Future Perspectives. *Polymers*, 2025, 17 (16), 2254. DOI: 10.3390/polym17162254
- [2] Wang K., Li S., Rao Y., Wu Y., Peng Y., Yao S., Zhang H., Ahzi S. Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. *Polymers*, 2019, 11 (11), 1878. DOI: 10.3390/polym11111878.
- [3] Oliwa R. The Mechanical Properties of Kevlar Fabric/Epoxy Composites Containing Aluminosilicates Modified with Quaternary Ammonium and Phosphonium Salts. *Materials*, 2020, 13 (17), 3726. DOI: 10.3390/ma13173726.

ДОСЛІДЖЕННЯ ПРОЦЕСУ ЦІАНОТИПІЇ ДЛЯ ДЕКОРАТИВНОГО ЗАБАРВЛЕННЯ ТЕКСТИЛЬНИХ МАТЕРІАЛІВ

Марія Тарасюк¹, Вікторія Миця^{1*}

¹Хмельницький національний університет, Хмельницький, Україна

*Corresponding author: mitsa_vv@ukr.net, Khmelnytskyi, 29008, Ukraine

The study examines cyanotype as an eco-friendly photochemical method of decorative textile dyeing using natural colorants. Experiments carried out on linen–cotton fabric investigated UV exposure time and material behavior, identifying optimal conditions for achieving stable, high-contrast prints. The results demonstrate the potential of cyanotype for innovative textile design and sustainable creative applications.

Keywords: cyanotype, textile dyeing, natural dyes, photochemical process, environmentally friendly technology.

1. Вступ

Ціанотипія – це один з найдавніших фотографічних процесів, що базується на фотохімічному створенні зображення характерного блакитного відтінку, відомого як «берлінська блакить». Метод розроблено у 1842 році британським науковцем і астрономом сером Джоном Гершелем. Суть процесу виникає при використанні двох основних хімічних речовин: цитрату амонію заліза (ІІІ) та фероціаніду калію. При змішуванні цих компонентів утворюється світлоочутлива суміш, яка наноситься на поверхню, наприклад, папір чи тканину. Після висихання поверхня набуває чутливості до ультрафіолетового (УФ) світла [1].

Експонування відбувається під впливом УФ-променів (сонячного світла або спеціального обладнання), які зумовлюють фітохімічні перетворення: залізо (ІІІ) відновлюється до заліза (ІІ), що взаємодіє з ферроціанідами і утворює нерозчинний у воді пігмент – берлінську блакить. Після експозиції матеріал промивають водою, яка видаляє невикористані солі, залишаючи стійке, контрастне зображення. Цей спосіб є безреберним (контактний друк без негативу), на відміну від традиційної фотографії (потрібна плівка, негатив, проявник).

Ціанотипія володіє низкою унікальних переваг: технологія є екологічно чистою, після чого не потребує важких металів чи токсичних розчинників; має просту та доступну методику нанесення світлоочутливої суміші; підходить для різних основ, включаючи текстильні

матеріали, папір, дерево тощо [2, 3]. Важливим є те, що процес дає можливість отримувати унікальні художні ефекти, які підходять для дизайнерських експериментів і створення авторських колекцій [4].

Серед недоліків ціанотипії варто відзначити певну низьку чутливість до світла, що потребує тривалого впливу УФ-випромінювання; обмеження щодо кольорової гами (монохромність); а також підвищена чутливість отриманих зображень до агресивних зовнішніх факторів, таких як ультрафіолет, волога та механічне пошкодження. Тому для промислового впровадження ціанотипії необхідна додаткова оптимізація процесу та розробка методів підвищення стійкості зображення.

У контексті сучасної текстильної промисловості цей метод набуває нового значення як інноваційний підхід для створення декоративних візерунків та індивідуалізації виробів з використанням безпечних природних барвників. Завдяки можливості контролю часу експозиції, вибору основи та додаткових механічних впливів (наприклад, накладення скла) процес можна адаптувати під конкретні технологічні завдання та художні цілі.

2. Результати та обговорення

Для проведення експерименту об'єктом дослідження було обрано зразки тканини змішаного складу – льон/бавовна, що відповідає актуальним тенденціям сучасного текстильного виробництва, орієнтованого на поєднанні натуральності, екологічності та функціональності матеріалів. Змішана структура основи поєднує міцність лляного волокна з м'якістю та гігроскопічністю бавовни, що забезпечує належну адгезію до світлочутливих реагентів і стабільність форми під час експозиції. Висока капілярність матеріалу сприяла рівномірному всмоктуванню розчину, а природна структура тканини додатково впливала на характер формування ефектів у зоні тіньових переходів.

На поверхню зразка наносили світлочутливу суміш, до складу якої входили гексаціаноферат (ІІІ) калію та оксалат амонію заліза (ІІІ). Отриманий розчин утворював активний фоточутливий шар, який забезпечував перебіг фотохімічної реакції ціанотипії під дією ультрафіолетового випромінювання. Для остаточної фіксації зображення застосовано перекис водню, що сприяло інтенсифікації кольору та стабілізації отриманого відбитка.

В якості трафарету було використано гілку туї, форма якої дозволяла отримати чистий, природний і деталізований візерунок на текстильній поверхні. Для забезпечення рівномірного прилягання трафарету до тканини на поверхню накладалося скло, що сприяло стабільності експозиції та зменшенню ризику зміни або розмиття контурів (рис. 1).

а

б

в

Рис. 1 Етапи підготовки експерименту:

- компоненти світлочутливої суміші;
- зразок тканини, оброблений світлочутливою сумішшю;
- зразок тканини з гілкою туї в якості трафарету

Експонування зразків здійснювалося під дією ультрафіолетового випромінювання, яке забезпечувало активізацію фотохімічної реакції утворення берлінської блакитності. Як джерело випромінювання використовувалася ультрафіолетова лампа спектрального діапазону 365 нм, що відповідає оптимальній довжині хвилі для ініціювання реакції відновлення іонів заліза (ІІІ) до заліза (ІІ). Лампа була розташована на фіксованій відстані від поверхні зразка, що мінімізувало коливання інтенсивності опромінювання та тим самим підвищувало точність порівняння результатів за різних умов експозиції (рис. 2). Застосування штучного УФ-джерела дозволило забезпечити стабільні, контролювані умови експозиції, усунути вплив зміни інтенсивності природного сонячного світла та провести відтворювані експериментальні серії.

a

б

в

Рис. 2 Проведення експерименту:

- експонування під дією ультрафіолетового світла;
- зразок тканини з трафаретом;
- зразок тканини без трафарету

Для виявлення закономірностей використання тривалості експозиції була проведена серія дослідів з часовими інтервалами – 5, 10 та 20 хв.

Результати дослідів представлені на рис. 3.

а

б

в

Рис. 3 Результат експонування з різною тривалістю:

- 5 хв;
- 10 хв;
- 20 хв

Такий підхід дозволяє не лише зафіксувати загальний характер прояву зображення, але й оцінити кінетику фотохімічного процесу, визначаючи швидкість перебігу реакції та чутливість матеріалу до ультрафіолетового випромінювання. Контроль різних режимів експонування є важливим для встановлення оптимальних технологічних параметрів ціанотипії, оскільки інтенсивність та тривалість дії УФ-променів також впливають на відновлення іонів заліза та кількості утвореного пігменту.

Результати дослідження показали, що при короткій експозиції (5 хв) зображення формується недостатньо чітко: спостерігається низька контрастність, блідість кольору та наявність нерівномірних ділянок. Це зумовлено тим, що за короткий час відбувається лише часткове відновлення сполук заліза, а інтенсивність фотохімічної реакції залишається недостатньою для формування стійкого пігментного шару. Зі збільшенням часу експонування (до 10 хв) фіксувалося помітне покращення відбитка: зображення ставало чіткішим, контрастність зростала, а тон вирівнювався по всій площині зразка. При 20-хвилинній експозиції було досягнуто максимального насичення кольору, а інтенсивність відтінку наблизилася до теоретично можливої для даної концентрації реагентів. Водночас збільшення часу експонування поза межами цього інтервалу не призводить до суттєвого покращення результату.

Таким чином, оптимальний час експозиції залежить від бажаного художнього ефекту, характеристик використаних матеріалів та інтенсивності джерела ультрафіолетового випромінювання. Комбінація цих параметрів дозволяє гнучко керувати естетичними властивостями відбитка, досягаючи як легких нюансних ефектів, так і максимально насичених композицій. З огляду на отримані результати, ціанотипія є унікальним фотохімічним процесом з багатовікою історією, який поєднує наукові принципи світлоочутливості з художньо-естетичним потенціалом матеріалу і може бути впровадженим в текстильні технології, екодизайн та мистецькі практики.

Список використаних джерел

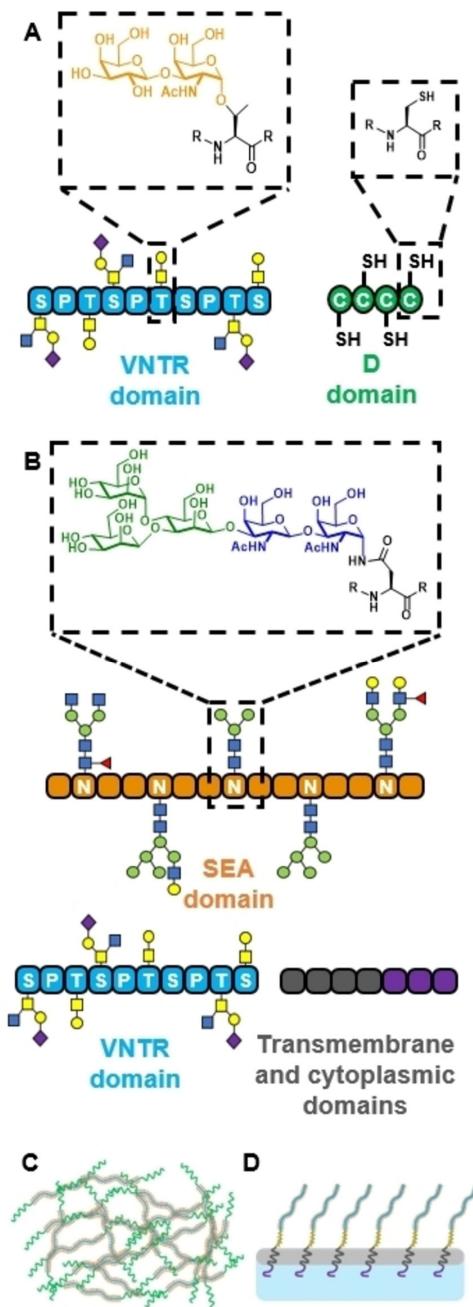
- [1] Mendez, A., Lopez-Leon, R. (2023). Creativity and cyanotype: Exploring camera-less photography as an alternative for art education. *Arts & Communication*. 1. 1453. <https://doi.org/10.36922/ac.1453>.
- [2] Makalesi, A., Çaygür, B. (2023). The Application of Cyanotype Photographic Processes on Glass: The "Mirror" Project Case Study. *Akademik Sanat Dergisi*. 20. 90–106. <https://doi.org/10.34189/asd.2023.20.007>
- [3] Çaygür, B. (2023). The Application of Cyanotype Procesess on Paper: The "Mağrur" Project Case Study. *the Journal of Academic Social Sciences*. 147. 576–593. <https://doi.org/10.29228/ASOS.73865>.
- [4] Рябчиков М., Мица В., Мовчанюк А. (2023). Формування концепції дизайну одягу за допомогою штучного інтелекту. *Herald of Khmelnytskyi National University. Technical Sciences*, 323 (4), 298–302. <https://doi.org/10.31891/2307-5732-2023-323-4-298-302>.

ВЛАСТИВОСТІ ТА БУДОВА ПРИРОДИХ МУЦІНІВ

Maryana Ovcharuk*, Oksana Topchii

National University of Food Technologies, Kyiv, Ukraine

*Corresponding author: newkraftbeer@ukr.net, Kyiv, 01033, Ukraine


Mucin is a high-molecular glycoprotein forming hydrated barrier gels on epithelial surfaces. Its bottle-brush structure ensures moisture retention, lubrication, and protection. Owing to viscoelasticity, hydration capacity and ability to form polymeric networks, mucin is a promising cosmetic thickener and moisturizer. However, controlled pH, ionic strength, purity and stability are essential for its safe and reproducible application.

Keywords: mucin, glycoprotein, hydrogel, lubrication, cosmetic formulation.

1. Introduction

Муцини – це великомолекулярні глікопротеїни, які утворюють основу слизових покривів (м'яких оболонок) багатьох епітеліальних тканин організму [1]. Вони секретуються спеціалізованими клітинами (наприклад, «caliciform»/goblet-клітини) й утворюють гідроколоїдні

гелі (слиз), які виконують захисні, мастильні, зволожувальні та бар'єрні функції, як показано на рис. 1 [3]. Завдяки цим властивостям муцини запобігають механічному, хімічному та мікробному пошкодженню епітеліальних поверхонь, підтримують їхню зволоженість, а також сприяють змащуванню при русі тканин або транспорті субстратів (наприклад, в дихальних або гастроінтестинальних шляхах) [2].

Рис. 1 Будова природних муцинів.

A) Гелеутворюючі муцини (блок-сополімери, що містять щільні O -глікозильовані домени зі змінною кількістю тандемних повторів (VNTR) і насичені цистеїном дисульфідоутворюючі D) домени. **B)** Муцини, пов'язані з мембраною, що містять O -глікозильовані домени VNTR і прив'язані до клітинної мембрани за допомогою N -глікозильованих доменів SEA, приседнаних до трансмембранного домену з розчинним цитоплазматичним хвостом. **C)** Гідрогель слизу, що складається з гелеутворюючих муцинів. **D)** Клітинна мембрана, що містить мембранозв'язані муцини

З огляду на ці властивості, муцин є перспективним кандидатом для використання у косметичних формулах як компонент, що забезпечує в'язкість, гелеподібну структуру, зволоження та змазування. У наукових публікаціях вже розглядають муцини як «будівельні блоки» для біоматеріалів – гідрогелів, змазок, засобів для зволоження, доставлення активних речовин, а також як основу для створення косметичних чи фармацевтичних продуктів [1].

2. Results and discussion

Муцин демонструє хорошу здатність до змащування навіть при низькому вмісті у водних розчинах, а його мастильна ефективність залишається відносно стабільною при зміні pH або іонної сили середовища. Це свідчить, що муцин може забезпечувати приємну текстуру, вологість, «ковзкість» і комфорт при нанесенні косметичних засобів.

Завдяки цій багатовимірній структурі та властивостям, як показано на рис. 1, муцин демонструє комплексну функціональність: гідратацію, змащування, захист від механічних, хімічних, мікробних подразників, бар'єрну функцію й навіть участь у клітинних сигнальних процесах (для мембраних муцинів).

Молекула муцину характеризується специфічною структурною організацією. За хімічним складом муцин – це глікопротеїн, де білковий каркас (поліпептидний) займає приблизно 20 % маси, а вуглеводна частина (олігосахариди, глікани) – близько 80 % [4]. Білкова частина включає численні tandem-повтори з багатими на серин (Ser) та треонін (Thr) залишки, що служать місцями O-глікозилювання. Це створює «щіткоподібну» конфігурацію (bottle-brush), яка, завдяки густому глікозилюванню, має високу гідрофільність, здатність зв'язувати й утримувати воду, а також забезпечувати відстань і стійкість до протеолізу [2].

Крім того, муцини мають цистеїн-збагачені домени на N- і C-кінцях, що дозволяє їм утворювати дисульфідні містки, які сприяють димеризації або мультимеризації → утворенню великомолекулярних полімерних мереж. Така полімеризація зумовлює утворення гелевої, в'язкої, пружної структури слизу: водоспоживна пориста мережа з великим гідратаційним потенціалом і певною механічною стійкістю [4]. Однак, є кілька обмежень і складнощів, які слід враховувати. У науковій літературі, зокрема, обговорюється створення рекомбінантних муцинових біополімерів саме задля забезпечення сумісності, стандартизації та контролю якості. По-друге, формування стабільних, однорідних гелевих структур із муцину поза природнім контекстом слизових оболонок – це непросте завдання: потрібна відповідна концентрація, контроль pH, іонної сили, умов зберігання та стабільності, особливо коли формула містить інші компоненти (консерванти, емульгатори, ароматизатори тощо). Потретє, існує потенційна біологічна активність муцину (зв'язування мікробів, вплив на клітинні сигнали, імунну відповідь тощо), яка може бути як перевагою (для «біоактивної» косметики), так і викликом (необхідність тестування безпеки і стабільності). Отже, хоча з наукової точки зору муцин має властивості, які роблять його дуже привабливим як загущувач – гідроколоїд, зволожувач, змащувальний і бар'єрний агент – його застосування в косметиці потребує ретельного підходу: стандартизації, контролю якості, тестування стабільності та безпеки.

References

- [1] Petrou G., Crouzier T. Mucins as multifunctional building blocks of biomaterials. *Biomater Sci.* 2018; 6 (9), pp. 2282–2297.
- [2] Tiange Lang, Sofia Klasson, Erik Larsson, Malin E. V. Johansson, Gunnar C. Hansson, Tore Samuelsson. Searching the Evolutionary Origin of Epithelial Mucus Protein Components – Mucins and FCGBP. *Molecular Biology and Evolution*, 2016, 33 (8), pp. 1921–1936.
- [3] Kwan, Chak-Shing & Cerullo, Antonio & Braunschweig, Adam. (2020). Design and Synthesis of Mucin-Inspired Glycopolymers. *ChemPlusChem*. 2020; 85 (12) pp. 2704–2721.
- [4] Atanasova K.R., Reznikov L.R. Strategies for measuring airway mucus and mucins. *Respir Res*, 2019; 20 (261), pp. 2–14.

RESEARCH OF THE BRINE REGENERATION PROCESS BY TANGENTIAL MICROFILTRATION METHOD IN CHEESE MASS PRODUCTION

Tsymbalyuk Yu.^{1*}, Martynyuk A.¹, Fedoriv V.¹

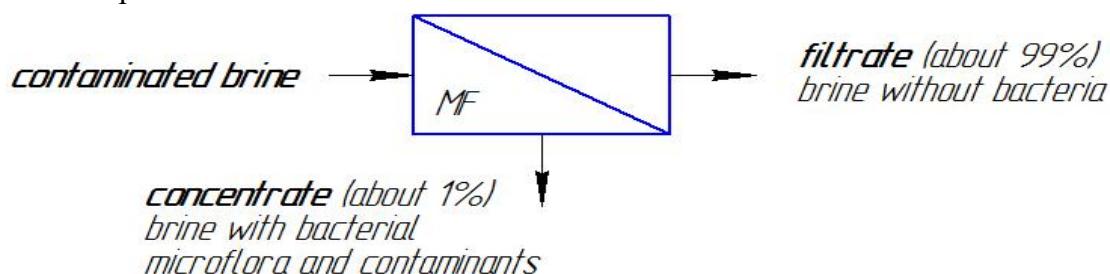
¹*Khmelnitskyi National University, Ukraine*

*Corresponding author: tsembalyk@gmail.com, Khmelnytskyi, 29025, Ukraine

Salting brine in cheese production accumulates impurities and requires regeneration to prevent microbial growth. The article analyzes modern methods of brine purification, emphasizing the effectiveness of membrane technologies, particularly microfiltration. These systems ensure removal of solids and bacteria, improve clarity and stability of brines, extend equipment lifespan, reduce waste, and preserve the quality of cheese masses.

Keywords: polymeric membranes, microfiltration, brine, membrane filtration, cheese masses.

1. Introduction


The main problem that arises during the cheese curing process is the fact of a gradual increase in the level of contamination of the brine due to the penetration of cheese components (proteins, fat, salt, lactose and solid particles) and bacteria into it. Contaminated brine is an excellent nutrient medium for the further growth of undesirable bacterial flora, including pathogenic bacteria, yeasts and molds, which are a significant threat to the quality of the final product. In addition, the brine is characterized by a delicate dynamic equilibrium between the individual components of the brine, such as calcium chloride, dissolved and precipitated calcium salts, lactose, lactic acid, as well as dissolved and denatured cheese proteins. The saturation of the brine with proteins and salts ensures its appropriate buffering capacity and, as a result, prevents the dissolution of subsequent batches of cheese introduced into the brine [1].

Over time, the brine becomes cloudy, which ultimately necessitates its replacement or preparation by thermal or chemical methods. Pasteurization of the brine disrupts the aforementioned dynamic equilibrium (especially by changing the level of calcium phosphate) and requires the use of heat exchangers resistant to corrosion caused by high NaCl concentrations. The chemical method disrupts the ripening process of cheeses in the surface layer [2].

The proposed installation is designed to restore cheese brine using membrane technology. This method is based on the physical separation of the solution on a membrane (microfilter) of a certain porosity under the influence of the pressure difference that arises on both sides.

The installation uses polymer microfiltration membranes, which are a physical barrier to particles in the solution whose size exceeds the size of the membrane pores. The size of these pores simultaneously determines the separation capacity of the membrane.

The process of regeneration of the brine is carried out in filtration modules, in which the brine is physically separated into two fractions (Fig. 1): filtrate – a pure brine with unchanged pH and preserved physicochemical equilibrium, free from bacterial microflora – intended for reuse in the process of salting cheeses; concentrate contains all bacterial microflora and solid contaminants – intended for disposal.

Fig. 1 Scheme of the brine regeneration process

2. Object and methods of research

It is known that a solution of table salt with a mass concentration of 18 % and above is not a favorable environment for the development of microflora. Nevertheless, the number of microorganisms in brine is constantly increasing due to the accumulation of microflora coming from the environment and cheese.

According to Lithuanian scientists, the total bacterial contamination of brine per year can increase from hundreds of cells to 3.6 million cells per 1 cm³ of brine. At the University of Wisconsin (USA), studies were conducted on the lifespan of *Salmonella* and *E. coli* cells in brines selected at different factories, as well as laboratory brines. The concentration of brines was 23 %, only the temperature varied: 8...15 °C for model brine, 4...15 °C for factory brine. The best survival was achieved by cells in factory and model brine at 4...8 °C, respectively. Complete cell death was achieved in 3 weeks. Some types of molds and yeasts not only survive, but even show some growth (up to 10 % of normal) in brine at salt concentrations of 20 % [3].

Therefore, brine can pose a danger to cheeses as a reservoir and as a source of harmful microflora. Therefore, there are restrictions on the content of microflora in brine; according to the Dutch standard, brine should not contain more than 5000 salt-resistant lactobacilli, gas-forming bacteria - no more than 1000 CFU/ml.

The purpose of this work is to study the process of brine purification by microfiltration. The study was conducted on the basis of a specialized enterprise-manufacturer of equipment for dairy plants, PrJSC "TESMO-M" (Khmelnytskyi). The object of the study is brine for salting cheese, LLC "Lityn Dairy Plant" (Lityn). The equipment used is an automated brine microfiltration unit of the AUMF-1 type manufactured by TESMO-M (Ukraine) (Fig. 2).

Fig. 2 Automated brine microfiltration unit type AUMF-1

3. Results and Discussion

During the study, the number of microorganisms was determined before and after filtration. The results of experiment are given in Table 1.

Table 1 Results of experiment

Number of microorganisms before filtration, cells/ml	Number of microorganisms after filtration, cells/ml	Cleaning efficiency %
10^8	10^3	99,99

A comparison of the purified brine with the concentrate (bacterial microflora and contaminants) can be seen in Fig. 3.

Fig. 3 Purified brine compared to concentrate (bacterial microflora)

4. Conclusions

Membrane filtration is an effective means of maintaining brine at a high sanitary and hygienic level. Purification can be carried out continuously throughout the day. Energy costs for one purification cycle are approximately 10 times lower than for pasteurization, with practically the same efficiency. The use of baromembrane methods (both microfiltration and ultrafiltration) is a promising energy-saving method of restoring the operational properties of brines. Energy costs when using membrane methods are approximately 10 times lower than those when using the thermal method of pasteurization.

References

- [1] Jørgen Wagner, B. Sc. Chem. Eng. 2001. Membrane Filtration Handbook. Practical Tips and Hints, Second Edition, Revision 2. Printed by Osmonics, Inc.
- [2] Pavan K., Neelesh S., Rajeev R., Sunil K., Bhat Z. F., Dong K. J. Perspective of Membrane Technology in Dairy Industry: A Review. 2013 Asian-Australasian Journal of Animal Sciences (AJAS), Vol. 26 (9).
- [3] Daufin, G., J. P. Escudier, H. Carrare, S. Barot, L. Fillaudeau, and M. Decloux, 2001 Recent and Emerging Applications of Membrane Processes in the Food and Dairy Industry. Food and Bioproducts Processing.

INNOVATIVE TECHNOLOGIES FOR COMBINED WELDING OF MATERIALS

Yuriy Zhiguts^{1*}, Oksana Kozar²

¹*Uzhhorod National University, Uzhhorod, Ukraine*

²*Mukachevo State University, tMukachevo, Ukraine*

*Corresponding author: yuzhiguts@gmail.com

Metalthermic and combined welding technologies require expensive powder ingredients to create a highly exothermic mixture. Currently, there are a number of technological techniques that reduce the cost of such a welding process. These include the use of metallurgical waste (dust from filters in foundries, graphite unburned electrode powder), and the use of metalworking waste (aluminium alloy chip powder). The authors of the study investigated the possibility of using

thermite alloys for welding alloyed and armoured steels. A comprehensive analysis of the properties of the welded joints obtained was carried out.

Keywords: metalloceramic, welding, exothermic reaction, alloyed steels.

1. Introduction

Thermit welding is a metal joining technology that uses the heat energy released during the combustion of a special thermite mixture. This mixture usually consists of crushed aluminium (or magnesium) and iron oxides (iron scale).

When aluminium thermite is used, the parts to be joined are first insulated with refractory material and preheated. Then, a liquid melt of the thermite alloy, formed as a result of the exothermic reaction of the mixture, is poured into the joint area. This high-temperature melt fuses with the base metal of the parts, ensuring the formation of a strong weld. This approach is effectively used for welding steel, cast iron, and some non-ferrous metals, in particular for joining railway rails, pipelines, eliminating cracks, restoring surfaces by surfacing, as well as for connecting electrical wires and cables [1, 2].

2. Result and discussion

Reaction kinetics. The ignition of the thermite mixture is initiated at a temperature of 850–1150 °C using special burners or thermite matches. The reaction is very rapid and spreads throughout the entire mixture in a matter of seconds. The combustion of 1 kg of thermite produces about 550 g of pure iron and 450 g of aluminium oxide, releasing a significant amount of thermal energy – about 3000 kJ. The temperature in the reaction zone can reach 2500 °C.

Further research in this area has focused on the application of thermite welding for alloy steels. Works [2, 3] describe that welded thermite steels belong to the ferritic class and are prone to intense grain size increase (coarsening). The characteristic features of this synthesis method are high welding speed and the formation of large heat-affected zones. To reduce the risk of brittleness of these steels in the dangerous temperature range of 450–500 °C, intensive cooling is used, which allows the zone of second-type temper brittleness to be quickly passed.

Research methods and materials. The main components for making a thermite mixture are: iron scale (a source of iron for welding), aluminium chips and aluminium powder (acting as reducing agents), as well as various alloying additives and modifiers (ferroalloy additives).

A special paste has been developed for use in exothermic welding technology, which is applied to the surfaces to be joined before combustion begins. Additives and fluxes are added to its composition, and up to 3 % nitrocellulose glue is added to achieve the required paste-like consistency. All these additional components have excellent technical characteristics and low cost. When welding carbon steels, preference is given to high-silicon fluxes with a high content of silicon dioxide (SiO_2) and manganese oxide (MnO).

Application and equipment. During the organisation of the metalloceramic welding process, special screens with high heat resistance made of a magnesite mixture are used. It is critically important that these screens have low moisture content, which should not exceed 1 %. The design of the device developed by the authors is simple and is considered to be the basic design for metalloceramic welding.

After filling the seam with paste, it is dried together with the entire device (after removing the matrix). The welding process is initiated by a special igniter. At the welding site, the temperature rises above 2000 °C, causing the edges of the material to melt, resulting in metalloceramic welding.

Experimental research. Analysis of existing methods for producing high-alloy steel billets revealed a key problem: the need to develop a technology for producing high-alloy thermite material and to organise a welding method that would allow late modification of thermite steel to be integrated directly into the technological cycle. An important condition was the economy of alloying materials and ensuring a reliable, high-quality connection of parts made of high-manganese steels.

The theoretical calculations performed at the initial stage were experimentally verified by conducting micro-melting. To reduce the cost of charge materials, aluminium powder was replaced with aluminium chips (crushed shavings) in further studies. Adjustments to the chemical composition of the charge made it possible to successfully weld test blanks under experimental industrial production conditions.

Technology improvement. Existing thermite welding technologies typically use single-chamber metal-thermal reactor designs. The disadvantage of this approach is the need to provide a reaction 'chamber-pit' in the pouring system, where the alloying additive interacts with the molten steel. The use of such an additional chamber significantly complicates the overall welding process and contributes to unwanted cooling of the molten metal.

The problem described above has been successfully solved by integrating two different technological approaches: thermite welding and modification directly in the inner cavity of the casting mould. This was made possible by the use of an innovative metal-thermal reactor design. The developed reactor design makes it possible to synthesise liquid steel for welding as a result of an aluminothermic reaction. The key advantage is that the alloying agent is introduced into the melt only after the thermite metal formation process is complete. This approach minimises the loss of alloying elements due to burnout. An additional innovation was the use of pusier (waste from the electric arc melting of high-manganese steel, which is dust collected by filters in foundries) instead of standard industrial ferromanganese. This reduces the cost of the metallurgical mixture and utilises waste from metallurgical production.

Thus, the optimal composition of the metallothermic mixture was proposed. In this mixture, ferromanganese is replaced by the specified waste products. The chemical composition of pushers allows creating an exothermic mixture capable of self-combustion with the formation of liquid steel grades similar to «110Г12Л» and «110Г13Л». The mechanical properties of the high-manganese thermite steels obtained correspond to or even exceed the characteristics of materials manufactured by traditional industrial methods, as confirmed by the data presented in Tab. 1.

Table 1 Mechanical properties of thermite high-manganese steel «110Г12Л»

No	σ_b , MPa	δ , %	a_h , MJ/m ²
1	830	21	11
2	835	18	9
3	830	20,5	9
4	810	21	10,5

Following a similar methodology, experimental melting and subsequent welding of two steel billets made of «110Г12Л» steel was carried out. The thermite welding process yielded satisfactory and promising results.

Welding of tungsten-based armoured steels. Armoured materials, which are supplied in the form of plates, sheets or bars, are mainly intended to protect structures from striking elements such as shells, bullets, mines or bombs. At the same time, they are also used in the civilian sector, in particular for armoured vehicle cladding, the manufacture of safes and other protective structures for valuable property. As a result of intense mechanical impact (e.g. shelling), the surface of tungsten armour steel can be damaged, resulting in cracks, punctures and other defects. In conditions where access to stationary welding equipment or power supply is limited (e.g., in the field), the use of specialised high-exothermic pastes for repair work becomes an effective solution.

The developed pastes consist of powdered thermite mixtures and additional alloying components. This composition is placed in a specialised mounting gun. If necessary, the mixture is applied directly to the defect area and ignition is initiated using a thermite fuse. The process of combustion and subsequent hardening of the paste takes only a few tens of seconds. After cooling,

the slag is removed and the quality of the weld is assessed visually. If defects or 'underwelded' areas are found, the surfacing procedure is repeated by reapplying the mixture. To ensure optimal joint quality, an individual metallothermic paste composition has been developed for each specific type of armoured steel.

Conclusions

The use of metallothermic welding technologies makes it possible to achieve high-quality welded joints. For example, when welding cast iron, it is possible to completely avoid the formation of an undesirable whitening zone in the weld structure.

The authors of this study also investigated the possibility of using thermite alloys for welding alloyed and armoured steels. A comprehensive analysis of the properties of the welds obtained was carried out, the influence of various thermite welding conditions on the final quality of the joint was assessed, the optimal compositions of metallothermic mixtures for various tasks were established, and the design of a special high-efficiency metallothermic reactor was described.

References

- [1] Жигуц Ю. Ю., Рудь В. Д., Кляп М. М. Особливості термітного зварювання високохромованих сталей // Матеріали і покриття в екстремальних умовах: теоретичні і експериментальні основи технології виготовлення: міжн. наук.-практ. конференція, 23–26 травня 2017 р. : тези доп. – Луцьк-О. Світязь : Луцький національний технічний університет, 2017. – С. 6.
- [2] Жигуц Ю. Ю. Термітне зварювання високолегованих сталей // 13-й міжнародний симпозіум українських інженерів-механіків у Львові: 18–19 травня 2017 р. : матеріали симпоз. – Львів : КІНПАТРІ ЛТД, 2017. – С. 199–200.
- [3] Жигуц Ю. Ю., Готра Д. В. Термітний чавун для зварювання // XIX ММНТК «Машинобудування очима молодих: прогресивні ідеї – наука – виробництво», 25–26 листопаду 2020 р., м. Суми : Вид-во СуМДу, 2020. – С. 149–150.

Mg-BASED ALLOYS AS PERSPECTIVE HYDROGEN STORAGE MATERIALS

Grygoriy Dmytriv^{1*}, Vasyl Kordan¹, Oksana Zelinska¹, Nazar Pavlyuk¹,
Volodymyr Pavlyuk¹, Bruno Hessel Silva², Abhishek Kumar³, Sabrina Sartori²,
Bjørn Christian Hauback², Anja Olafsen Sjåstad³

¹Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Lviv, Ukraine

²Department of Technology Systems, University of Oslo, Kjeller, Norway

³Department of Chemistry, University of Oslo, Oslo, Norway

⁴Department of Hydrogen Technology, Institute of Energy Technology, Kjeller, Norway

*Corresponding author: grygoriy.dmytriv@lnu.edu.ua, 6 Kyryla i Mefodiya St., 79005 Lviv, Ukraine

Among Mg-based alloys hydrogenation properties of Mg_{1.42}Al have been extensively studied. In our work, we investigated the enhancement of these properties by adding yttrium. We present structural and hydrogenation properties of the binary Mg_{1.42}Al alloy and yttrium-doped Mg_{1.42}Al-Y studied using gas-phase hydrogenation methods and X-ray powder diffraction.

Keywords: hydrogen storage material; metal hydride; hydrogen energy; intermetallic compound.

1. Introduction

The hydrogenation behaviour of the Mg_{1.42}Al compound was studied and described by [1,2]. It was found that Mg_{1.42}Al reacts with hydrogen at 573 K, forming Mg₂Al₃, MgH₂, and Al. Increasing the hydrogenation temperature to 623 K results in the decomposition of Mg₂Al₃ into

MgH₂ and the solid solution Al_{1-x}Mg_x [1]. The investigation of Mg_{1.42}Al hydrogen storage capacity, depending on the preparation process (sintering, annealing and mechanical ball milling), showed that mechanical milling enhances the hydrogen storage capacity, improves kinetics, and reduces the dehydrogenation temperature [2].

Another effective way to improve the hydrogen sorption properties of intermetallic phases is to modify them by introducing activating additives. Regarding Mg_{1.42}Al, there are no experimental studies described in the literature, but there is a theoretical work [3], in which the effect of yttrium on the sorption properties of Mg_{1.42}Al was estimated by using the density functional theory. This study presents experimental results on the hydrogen sorption properties of Y-substituted Mg_{1.42}Al with particular attention to kinetic performance and the associated structural modifications observed during hydrogenation reactions.

2. Results and discussion

The binary Mg_{1.42}Al and the ternary doped by yttrium alloys were prepared from the pure metals in an arc furnace under an argon atmosphere.

Powder X-ray Diffraction (PXRD) data were collected using Bruker D8 Advance diffractometer with XE-T detector and PROTO AXRD diffractometer (Cu $K\alpha$ -radiation, θ – 2θ mode). The phase analysis of the samples, quantification of phase content and structural calculations were carried out based on the powder data using the FullProf program package [4].

Hydrogen absorption measurements were performed using a Sieverts-type apparatus (SETARAM® PCT-Pro).

Kinetic measurements were obtained at 350 °C without any activation treatment, under an applied hydrogen pressure of approximately 55 bar of hydrogen for 15 and 65 hours. Hydrogenated samples were stored in a glovebox under an argon atmosphere and subsequently characterised using XRPD, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) using a Tescan Vega3 LMU system equipped with an Oxford Instruments X-MaxN20 detector and a high-resolution Hitachi SU-8230 FE-SEM with a Bruker XFlash6I10 EDS analyser.

The results of XPRD-based phase analysis of as-cast alloys Mg_{1.42}Al and substituted with yttrium (up to 2.5 at. %) before and after hydrogenation showed the formation of new phases. Crystal structures of all phases were identified and refined.

The hydrogenation behaviour of the investigated samples within 15 and 65 hours showed that the binary Mg_{1.42}Al and the substituted with yttrium ternary composition initially absorbed almost the same storage capacity within 2–3 hours of reaction time, but subsequently reached distinct hydrogen storage capacities due to differences in the kinetic behaviour. A significant improvement in the storage properties of the Y-substituted sample (4.4 wt.% H₂) was observed after 65 hours at 350 °C compared with the binary Mg_{1.42}Al (3.4 wt.%). The enhanced performance can be attributed to the presence of multiphase structures and interphase boundaries, which provide more favourable sites for hydrogen uptake and diffusion.

Acknowledgments

G. D., V. P., V. K., O. Z. and N. P. are thankful for support to the Simons Foundation International (Record ID: PD-Ukraine-00014574).

References

- [1] Q.A. Zhang, H.Y. Wu, Hydriding behavior of Mg₁₇Al₁₂ compound, *Mater. Chem. Phys.* 94(1) (2005) 69–72.
- [2] W. Peng, Z. Lan, W. Wei, L. Xu, J. Guo, Investigation on preparation and hydrogen storage performance of Mg₁₇Al₁₂ alloy, *Int. J. Hydrogen Energy.* 41(3) (2016) 1759–1765.

[3] H. Ning, G. Wei, J. Chen, Z. Meng, Z. Wang, Z. Lan, X. Huang, J. Chen, P. Qing, H. Liu, W. Zhou, J. Guo, 2024. Investigation on hydrogenation performance of Mg₁₇Al₁₂ by adding Y, *Sci. Rep.* 14(1) (2024) 18115.

[4] T. Roisnel, J. Rodriguez-Carvajal. WinPLOTR: a Windows Tool for Powder Diffraction Pattern Analysis, *Materials Science Forum*. 378–381. (2001) 118–123.

DEVELOPMENT OF ADDITIVE TECHNOLOGY FOR PROSTHETIC LEGS

Serhiy Horiashchenko¹, Diana Janchysena²

¹*Khmelnytskyi National University*

²*Lyceum No. 1 named after Volodymyr Krasytsky*

The article discusses the technology of creating cyberprostheses that operate on the principle of reading bioelectric signals from the nervous system or muscle fibers. The received signals are converted by a microprocessor into commands for controlling the movements of the artificial limb. Such systems allow a person to consciously control the movements of the prosthesis, and modern machine learning algorithms help the device adapt to the individual characteristics of the user. The use of additive technologies in this case is extremely important, because it is 3D printing that allows you to create lightweight, ergonomic designs that accurately repeat the anatomical shape of the limb and provide comfort during operation.

Keywords: mechanism, prosthetic, additive, technology.

1. Introduction

The patent decisions of Charles Hull, Carl Deckard, and Scott Crump became fundamental in the advancement of additive technologies in medicine. The inventors established the groundwork for the three primary 3D printing methods—stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM). These processes initiated commercial production and subsequent innovations in materials and software.

Due to these discoveries, 3D printing evolved from a highly specialized technique into a versatile instrument for industry, healthcare, aviation, and education. The patents served as a catalyst for the ongoing technological revolution, enabling the fabrication of complex parts with high precision and minimal material waste.

Although the foundational patents date from the 1980s, the technologies are consistently refined: new substances appear, printing speed and accuracy increase, and multi-material systems develop. They also underpin contemporary fields, such as bioprinting and the creation of functional composites [1, 2].

Thus, examining existing patent solutions confirms their crucial contribution to shaping the future of additive manufacturing and emphasizes the significance of the sector's continued progress.

2. Results and discussion

Extended scheme (algorithm) for the development of an adaptive leg prosthesis.

STAGE A – Need identification and initial analysis.

A.1. Target group identification:

- Collection of clinical requirements: type of amputation (below/above the knee), K-level of activity, expected workload, comorbidities.

- Family survey, interviews with prosthetists and physiotherapists.

- Document: “Clinical requirements and use cases” (DOCX/PDF).

- User personas (PDF).

STAGE B – Technical Requirements and Planning (SRS / Project Plan).

B.1. SRS Development (Software and System Requirements):

- Functional Requirements (gait modes, sensor interfaces, BMS, telemetry).
- Non-functional (mass, controller response time, power consumption, operating temperatures).
- Safety and regulatory requirements (list of standards, data confidentiality).
- SRS document (Markdown + PDF).
- Traceability matrix (requirements ↔ tests).

STAGE C – Conceptual Design and CAD Sketch.

C.1. Conceptual Mechanical Design:

- Development of several concepts (passive, quasi-passive, active).
- Selection of materials (carbon, aluminum, titanium inserts).
- Moodboard / Conceptual sketches (PNG/PDF).
- Concept comparison table (BOM, weight, complexity).

C.2. CAD sketch and primary kinematics:

- Create a parameterized CAD model (SolidWorks / Fusion360).
- Create stage files: STEP/IGES (for mechanical), STL (for 3D printing).
- Simple kinematic analysis (shared ROM, motion limit).
- CAD files (.sldprt/.sldasm or .f3d), STEP, IGES, PDF files.
- Kinematic report (angle tables, allowable loads).

Conclusions

Intelligent implants are high-tech devices that restore the body's functions and interact with its biological systems.

Thanks to the combination of additive technologies, bioengineering and artificial intelligence, they become accurate, effective and individually adapted to the patient.

One of the most common examples of intelligent implants is cyberprostheses, which operate on the principle of reading bioelectric signals from the nervous system or muscle fibers. The received signals are converted by a microprocessor into commands to control the movements of the artificial limb. Such systems allow a person to consciously control the movements of the prosthesis, and modern machine learning algorithms help the device adapt to the individual characteristics of the user. The use of additive technologies in this case is extremely important, because it is 3D printing that makes it possible to create lightweight, ergonomic structures that accurately repeat the anatomical shape of the limb and provide comfort during operation.

Medical devices need to plan for compliance (in Ukraine/EU/USA - different requirements). System as a medical device, quality standards (ISO 13485), clinical trials, risk documentation (ISO 14971). Potential technical risks and how to reduce them:

- 1 Weight of the prosthesis: use of composites (carbon) to reduce weight; modular design.
- 2 Safety in case of power failure: mechanical locks/dampers to avoid uncontrolled bending.
- 3 Reliability of drives: selection of industrial solutions with a resource margin; cyclic endurance test.
- 4 Compatibility with the socket: individual adjustments; pressure sensors to detect problems.

References

[1] Terumo Pharmaceutical Solutions – TMCS. Terumo Pharmaceutical Solutions – TMCS. URL: <https://www.terumopharmaceuticalsolutions.com/en-emea> (date of access: 30.11.2025). URL: <https://www.terumopharmaceuticalsolutions.com/en-emea> (date of access: 30.11.2025).

[2] Singh, A. B. (2024). Transforming Healthcare: A Review of Additive Manufacturing Applications in the Healthcare Sector. *Engineering Proceedings*, 72 (1), 2. <https://doi.org/10.3390/engproc2024072002>

[3] Charbonnier, B. Hadida, M. Marchat, D. Additive manufacturing pertaining to bone: hopes, reality and future challenges for clinical applications. *Acta Biomater.* 2021; 121:1–28.

[4] Hajare, D. M. Gajbhiye, T. S. Additive manufacturing (3d printing): recent progress on advancement of materials and challenges Mater. Today Proc. 2022; 58:736–743.

[5] Rezvani Ghomi, E. Khosravi, F. Neisiyan, R. E. Future of additive manufacturing in healthcare Curr. Opin. Biomed. Eng. 2021; 17, 100255.

ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ КАВІТАЦІЙНОГО МЕТОДУ ІМПРЕГНУВАННЯ ТЕКСТИЛЬНИХ МАТЕРІАЛІВ

Андрій Єрій^{1*}, Олег Синюк²

^{1,2}Хмельницький національний університет, Хмельницький, Україна

*Corresponding author: andrijerij@gmail.com, postal address, Khmelnytskyi, 29008, Ukraine

The study evaluates the efficiency of cavitation impregnation of textile materials using an ultrasonic system. Comparative tests show that ultrasonic cavitation increases impregnation depth, weight gain, and liquid retention compared to the classical method. The results confirm its higher effectiveness and faster processing, making the method suitable for dense and low-capillarity textiles.

Keywords: impregnation of textile materials; cavitation impregnation; ultrasonic cavitation; modification of textile fabrics; functional textile materials.

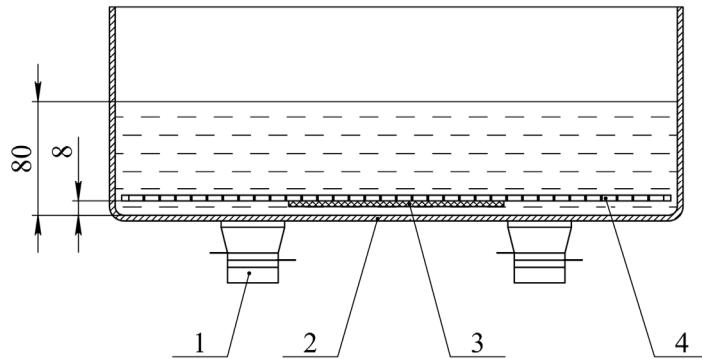
1. Introduction

Проаналізувавши сучасні методи імпрегнування текстильних матеріалів [1–3] було встановлено, що в більшості випадків нанесення імпрегуючих розчинів відбувається за рахунок явища адгезії, проте, це надає лише поверхневий ефект захисту від полум’я, а зовнішній захисний шар може бути з легкістю зруйнований. Технології які передбачають дифузію захисних сполук в глибину матеріалу мають недолік в контексті просочування товстих шарів матеріалів та матеріалів з низькою капілярністю [4].

Перспективним методом просочування текстильних тканин є використання ультразвукової кавітації. Для дослідження ефективності цього методу було здійснено ряд експериментів з використанням ультразвукової кавітаційної ванни та порівняльного методу аналізу.

2. Results and discussion

В ході проведення експериментальних досліджень ефективності імпрегнування текстильних матеріалів було використано кавітаційну установку, що базується на використанні ультразвукового випромінювання для генерації кавітаційного поля та електронні ваги, що використовувались для фіксації ваги імпрегнату, яким просочувались заготовки.


Технічні параметри обладнання: кавітаційна ванна з частотою 40 кГц, потужністю випромінювача 60 Вт та загальною потужністю 240 Вт (4 випромінювачі); електронні ваги з точністю 0,01 г.

Для дослідження кавітаційного методу було обрано матеріал – ватин, оскільки, його пориста структура та наявність повітряних прошарків дозволяють чітко продемонструвати ефективність кавітаційного методу імпрегнування. Заготовки мали такі характеристики: розміри 150×150×2 мм, масу сухого матеріалу (наведено в таблиці 1) та щільність 1000 г/м².

Умови проведення експерименту: атмосферний тиск 770 мм рт. ст., температура повітря 20 °C, температура робочої рідини 12 °C та глибина занурення зразків 72 мм.

Дослідна установка складається з ультразвукового випромінювача (1), розташованого під ванною (2) з робочим розчином. Зразок (3) занурюється в рідину та фіксується обмежуючою решіткою (4), що забезпечує його стабільне положення у товщі рідини. Загальний вигляд кавітаційної ванни наведено на рис. 1.

Результати експериментальних досліджень занесено в таблицю 1.

Рис. 1 Модель дослідної установки

Таблиця 1 Результати дослідження кавітаційного просочування матеріалів

Номер досліду	Вага досліджуваних зразків матеріалу, г					Вага після стікання тривалістю 1 хв	
	Зразки № 1 до просочування	Зразки № 2 до просочування	Просочування без кавітації	Просочування з кавітацією			
	Зразки № 1	Зразки № 2					
1	4,66	4,66	44,86	45,80	40,15	43,60	
2	5,06	4,84	44,82	50,41	37,2	38,94	
3	5,06	4,96	45,18	50,58	40,11	39,33	
4	5,06	4,68	41,75	49,1	37,31	39,15	
5	5,43	5,2	49,76	49,42	39,5	44,11	
6	5,71	5,45	51,03	54,43	39,83	45,79	
7	5,06	5,08	49,69	48,18	39,11	44	
8	4,6	4,61	43,6	44,46	35,81	39,68	

Для кількісної оцінки ефективності просочування було використано такі показники: коефіцієнт просочування (K_n) розраховується як відношення ваги просоченого зразка до його початкової ваги; відсоткове збільшення ваги ($\Delta W\%$), яке показує, наскільки зросла маса матеріалу після обробки; ефективність утримання рідини (E_{ym}), що визначає частку рідини, яка залишилася в матеріалі після періоду стікання в 1 хв; показник відносної ефективності (E_{nop}), який демонструє, на скільки відсотків один метод перевершує інший.

Коефіцієнт просочування матеріалу визначається за формулою:

$$K_n = \frac{m_n}{m_c}, \quad (1)$$

де m_n – вага зразка після просочування, г; m_c – вага сухого зразка до просочування, г. Відсоткове збільшення ваги визначається, як:

$$\Delta W\% = \left(\frac{m_n}{m_c} - 1 \right) \cdot 100\%, \quad (2)$$

де m_n – вага зразка після просочування, г; m_c – вага сухого зразка до просочування, г. Ефективність утримання рідини після стікання:

$$E_{ym} = \left(\frac{m_{nc} - m_c}{m_n - m_c} - 1 \right) \cdot 100\%, \quad (3)$$

де m_{nc} – вага зразка після стікання рідини, г.

Порівняльна ефективність методів визначається як співставлення мас та визначається із залежності:

$$E_{nop} = \left(\frac{\Delta W_{кав} - \Delta W_{кл}}{\Delta W_{кл}} - 1 \right) \cdot 100\%, \quad (4)$$

де $\Delta W_{кав}$ – для кавітаційного методу; $\Delta W_{кл}$ – для класичного методу.

Суттєвою перевагою кавітаційного методу просочування є підвищення швидкості просочування. Швидкість просочування матеріалу визначається як:

$$v_{np} = \left(\frac{m_n - m_c}{t} - 1 \right), \text{ г/с}, \quad (5)$$

де t – час просочування, с.

Результати розрахунків занесено до таблиці 2.

Таблиця 2 Результати розрахунків ефективності методів просочування матеріалів

Номер досліду	Класичний метод просочування				Кавітаційний метод просочування				Порівняльна ефективність методів, E_{nop} , %
	K_n	$\Delta W\%$	E_{ym} , %	v_{np} , г/с	K_n	$\Delta W\%$	E_{ym} , %	v_{np} , г/с	
1	9,63	862,661	0,883	0,670	9,83	882,833	0,947	0,686	2,338
2	8,86	785,771	0,808	0,663	10,42	941,529	0,748	0,760	19,822
3	8,93	792,885	0,874	0,669	10,20	919,758	0,753	0,760	16,001
4	8,25	725,099	0,879	0,612	10,49	949,145	0,776	0,740	30,899
5	9,16	816,390	0,769	0,739	9,50	850,385	0,880	0,737	4,164
6	8,94	793,695	0,753	0,755	9,99	898,716	0,824	0,816	13,232
7	9,82	882,016	0,763	0,744	9,48	848,425	0,903	0,718	-3,808
8	9,48	847,826	0,800	0,650	9,64	864,425	0,880	0,664	1,958
Середні значення	9,133	813,293	0,816	0,688	9,944	894,402	0,839	0,735	10,576

Провівши аналіз отриманих даних можна констатувати, що кавітаційний спосіб виявляє більшу результативність порівняно зі звичайним: середній коефіцієнт просочування становить 9,944 проти 9,133. Найвищий показник (10,49) зареєстровано в експерименті № 4, що доводить здатність методу до інтенсивнішого насичення матеріалу рідким середовищем.

Використання кавітації призвело до збільшення маси зразків на 882–949 % (середнє – 894,402 %), тоді як традиційний підхід показав результати в межах 725–882% (середнє – 813,293 %). Найвища відмінність (30,9 %) зафікована саме в експерименті № 4, що підкреслює переваги цієї технології для обробки матеріалів зі складними морфологічними характеристиками. Крім того, кавітаційна обробка забезпечує краще утримання рідини: середнє значення цього параметру становить 0,839 (розкид – 0,748–0,947) на відміну від 0,816 (розкид – 0,753–0,883) при класичному методі. Це свідчить про посилену дифузію рідини вглиб волокон та її стабільнішу фіксацію після завершення процесу.

У аналізі порівняльної ефективності кавітаційний метод випереджає традиційний на 2–30,9 % із середнім значенням 10,576 %. Виняток становить експеримент № 7, де звичайний підхід виявився ефективнішим (–3,8 %), що може пояснюватися специфікою структури конкретного зразка або відхиленнями в експериментальних умовах. Також, можна стверджувати, що при використанні кавітаційного методу швидкість просочування матеріалу є швидшою, що в свою чергу прискорює час виконання технологічних операцій.

Отже, кавітаційний метод імпрегнування матеріалів є ефективним рішенням, що підвищує якість дифузії антипренів в товщі матеріалів. Отримані дані підтверджують доцільність використання методу при просочуванні важких та товстих текстильних матеріалів.

References

[1] Repon M. R., Islam T., Sadia H. T., Mikučionienė D., Hossain S., Kibria G., Kaseem M. Development of antimicrobial cotton fabric impregnating AgNPs utilizing contemporary practice // Coatings. – 2021. – Vol. 11, No. 11. – Article No. 1413. – URL: <https://doi.org/10.3390/coatings11111413>(date of access: 25.05.2025).

[2] Malucelli Giulio. Sol-Gel and Layer-by-Layer Coatings for Flame-Retardant Cotton Fabrics: Recent Advances / Giulio Malucelli // Coatings. – 2020. – Vol. 10, No. 4. –P. 333. – Режим доступу: <https://doi.org/10.3390/coatings10040333>(дата звернення: 08.05.2025).

[3] Method and apparatus for controlling the impregnation of textiles: U.S. Patent No. 2,177,323. – Patented Oct. 24, 1939. – Washington, DC : U.S. Patent and Trademark Office. – 6 p. – URL: <https://patentimages.storage.googleapis.com/d3/d9/7f/82b379127ef871/US2177323.pdf> (date of access: 01.06.2025).

[4] Дослідження сучасних методів та технологічного устаткування для імпрегнування текстильних матеріалів / О. М. Синюк, А. В. Єрій. Вісник Хмельницького національного університету. Технічні науки. 2025. № 5.1.

GC-MS ANALYSIS OF TOOTHPASTE COMPOSITION

Hanna Tkachuk, Olha Sydoruk, Andrii Tkachuk, Halyna Biletska

Khmelnitskyi National University, Khmelnitskyi, Ukraine

*Corresponding author: tkachukha@khnmu.edu.ua, Khmelnitskyi, 29016, Ukraine

This paper describes the necessity and application of Gas Chromatography-Mass Spectrometry (GC-MS) for the comprehensive analysis of volatile and semi-volatile organic compounds in toothpaste formulations. GC-MS provided high-sensitivity profiles of an experimental toothpaste using two temperature programs. Regime 2 (lower initial temperature, low split ratio) was found to be optimal, identifying carvone (flavoring agent) and various fatty acid amides (surfactants/emulsifiers). The study confirms the presence of effective functional and aromatic organic components, while highlighting the need for further safety assessment of high-concentration compounds like 3-pentylpiperidin-2-one before industrial production.

Keywords: toothpaste analysis, GC-MS, carvone, fatty amides, 3-pentylpiperidin-2-one.

1. Introduction

The rapid development of the consumer market and the increased demand for product safety concerning human health necessitate the advancement of methods for quality control and compositional analysis of hygiene products, particularly toothpastes. Today, toothpastes are an integral part of daily care, and their formulation encompasses a complex mixture of active, excipient, and sometimes potentially undesirable components.

The relevance of a thorough analysis of their composition is growing due to the increasing public sensitivity to certain substances (e.g., allergens, preservatives, flavorings) and the need to monitor the content of Volatile and Semi-Volatile Organic Compounds (VSOCs), which can affect the product's efficacy, shelf-life, or even safety.

Gas Chromatography coupled with Mass Spectrometry (GC-MS) is the gold standard in chemical analysis, as it provides high sensitivity, selectivity, and reliable identification of a wide spectrum of organic compounds. The application of GC-MS to the analysis of toothpastes is critical for addressing the following tasks: quality control and authenticity, identification and quantification of active ingredients, detection of contaminants and impurities, analysis of aromatic profiles, and the investigation of stability and degradation.

Considering that many toothpaste components, such as certain flavorings or trace impurities, may be volatile or thermally stable, GC-MS is the ideal tool for their accurate identification, even at very low concentrations. Thus, the investigation of toothpastes using the GC-MS method is not only a scientific necessity for understanding the chemical composition but also a critical element of the pharmaceutical and hygienic surveillance system for ensuring maximal consumer safety.

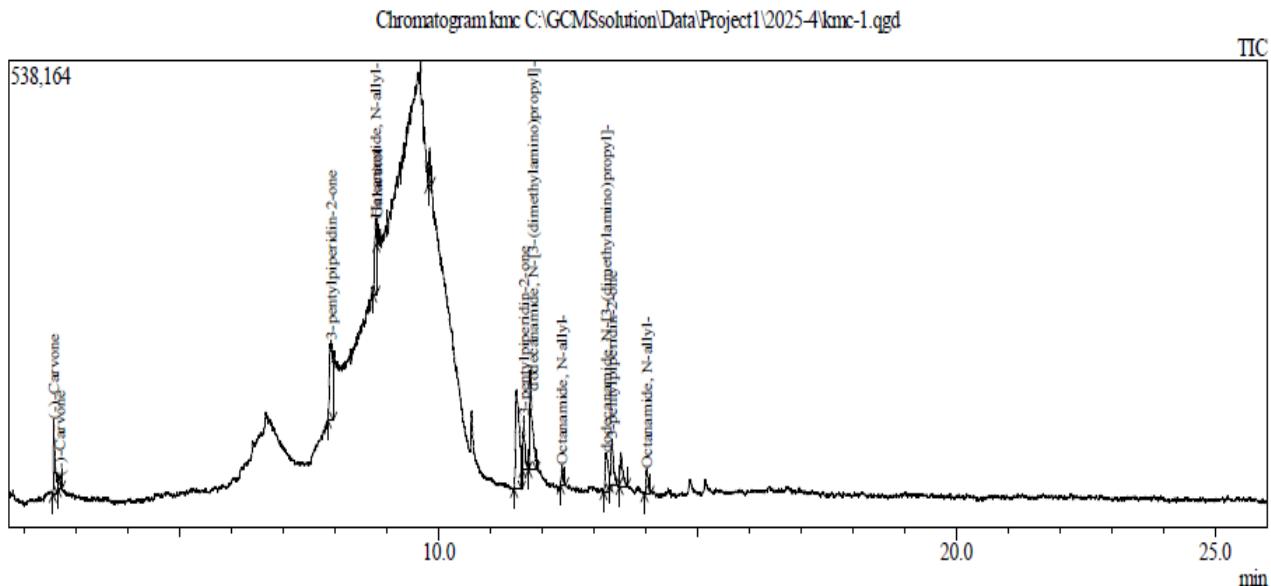
2. Results and Discussion

An experimental toothpaste was prepared using carboxymethylcellulose (CMC) as a thickener. For the study, a 0.2 g sample of the toothpaste was weighed using an analytical balance (AS-220/C), 2 cm³ of methanol solvent was added, and soluble compounds were extracted for 3 hours. The resulting solution was filtered and analyzed by GC-MS.

The instrument used was a GCMS-QP2020 EI Shimadzu. The separation was performed on an Rx-5ms capillary column 30 m length, 0.25 mm inner diameter, 0.25 µm film thickness with a constant flow rate of 1.5 mL/min using helium as the carrier gas. The injector was an AOC-20i auto-injector with a vaporizer temperature of 250 °C. The mass-selective detector parameters were: interface temperature 280 °C; ionization by electron impact (EI) with ionization energy of 70 eV; ion source temperature 230 °C; and quadrupole temperature 150 °C.

The experiment was carried out in two temperature ramp programs with different split ratios and injection volumes: Regime 1) initial temperature of 120 °C, increased to 300 °C over 18 min, followed by an isothermal hold at 300 °C for 12 min. Injection volume was 1 µL, with a split ratio of 50; Regime 2) Initial temperature of 60 °C held for 2 min, increased to 300 °C over 16 min, followed by an isothermal hold at 300 °C for 12 min. Injection volume was 2 µL, with a split ratio of 5.

The analysis of the mass chromatograms was performed using GCMSSolution software, utilizing NIST 2014, NIST 2017, SWDRUG 3.6 mass spectral databases, as well as the NIST MS Search Program with CaymanSpectralLibrary_v10192019 and dd2015 databases.


The results of the toothpaste analysis under Regime 1 and Regime 2 are shown in Figures 1 and 2, respectively. In Regime 1, mainly amides (surfactants) and piperidine derivatives were detected. This regime is optimal for high-molecular-weight, less volatile components. Regime 2 is optimized for volatile components and trace amounts of substances: it identified the flavoring agent carvone, galactol, amides, and piperidine derivatives. A significant quantity of N-alkyl- or N,N-dimethyl-substituted octanamides and dodecanamides indicates the use of fatty acid derivatives as the main surfactants (SAS) or emulsifiers. These are essential for foaming, cleaning, and stabilizing the emulsion of the paste [1]. The high concentration of carvone, particularly noticeable in Regime 2, suggests the paste possesses a pronounced mint flavor, as carvone is a key component of essential oils, such as spearmint. The high concentration of 3-pentylpiperidin-2-one, present in both regimes, may be associated with certain synthetic compounds or serve as an auxiliary agent or a residual product of synthesis. Galactol is a sugar alcohol that can act as a humectant, sweetener, or part of natural extracts. As a thickener, CMC was used, which is not detectable by the GC-MS method due to its non-volatile polymeric nature.

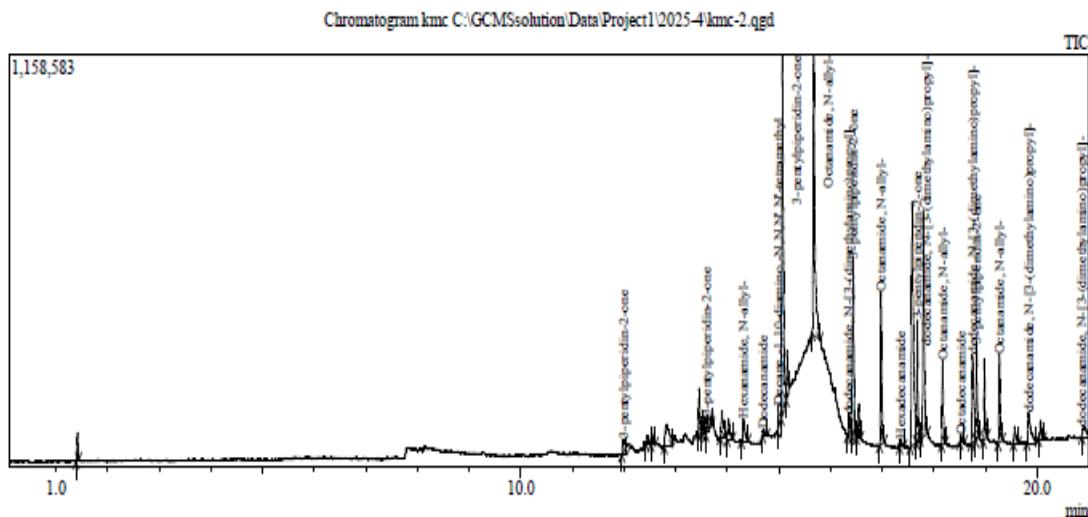
Thus, the research data indicate the presence of an effective flavoring agent in the experimental toothpaste. The presence of carvone ensures a pleasant and fresh aroma, which is a key factor in the consumer appeal of the toothpaste [2].

The proposed toothpaste contains functional Surfactants (SAS) in its composition, such as fatty acid amides – namely octanamides and dodecanamides – which are effective washing and foaming agents, ensuring quality tooth cleaning.

Furthermore, the toothpaste contains a variety of components. Its composition suggests that the paste is a full-fledged modern product that includes both cleansing and organoleptic taste and aromatic agents.

As a result of the studies, a successful extraction was performed, and the GC-MS method, especially in Regime 2, allowed for obtaining a clear and complete profile of volatile and semi-volatile organic compounds, which is important for quality control.

Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	2.566	2.547	2.640	200499	7.19	86501	10.43	2.32	MI	(-) -Carvone
2	2.688	2.640	2.723	45861	1.64	15147	1.83	3.03	MI	(-) -Carvone
3	7.926	7.857	7.967	403199	14.46	92270	11.12	4.37	MI	3-pentylpiperidin-2-one
4	8.783	8.737	8.800	199844	7.17	86727	10.46	2.30	MI	Hexanamide, N-allyl-
5	8.817	8.800	8.843	38193	1.37	28619	3.45	1.33	MI	Galactitol
6	9.828	9.803	9.863	78416	2.81	43388	5.23	1.81	MI	
7	11.500	11.457	11.607	608608	21.82	114656	13.82	5.31	MI	dodecanamide, N-[3-(dimethylamino)propyl]-
8	11.647	11.617	11.737	165937	5.95	61884	7.46	2.68	MI	3-pentylpiperidin-2-one
9	11.772	11.737	11.893	403077	14.45	113179	13.64	3.56	MI	
10	12.386	12.360	12.447	59032	2.12	23220	2.80	2.54	MI	Octanamide, N-allyl-
11	13.234	13.187	13.307	195676	7.02	44447	5.36	4.40	MI	dodecanamide, N-[3-(dimethylamino)propyl]-
12	13.348	13.307	13.497	168250	6.03	51704	6.23	3.25	MI	3-pentylpiperidin-2-one
13	13.522	13.497	13.640	137785	4.94	39066	4.71	3.53	MI	
14	14.021	13.980	14.093	84322	3.02	28701	3.46	2.94	MI	Octanamide, N-allyl-
				2788699	100.00	829509	100.00			


Fig. 1 Results of Toothpaste Analysis in Regime 1

However, the identification of all components requires further study: although most peaks shown in Figures 1 and 2 are identified, there are compounds in the samples whose full names are unclear or require additional confirmation [3].

The high concentration of 3-pentylpiperidin-2-one, which frequently appears as one of the main peaks in both regimes, requires a mandatory safety check regarding its harmlessness to the oral mucosa and compliance with cosmetic product safety standards, such as those of the EU or FDA. Although it may be a harmless auxiliary component, its significant quantity warrants attention.

In addition, the conducted analysis cannot determine the presence and concentration of non-volatile key components of toothpastes, such as sodium fluoride and sodium monofluorophosphate, or widely known antiseptics like triclosan or cetylpyridinium chloride, as they are not detectable by the GC-MS method. For complete control, other analytical methods, such as ion exchange chromatography, must be applied [4].

Therefore, the studies conducted using the GC-MS method confirm that the experimental toothpaste contains the expected set of functional and aromatic organic components. However, prior to industrial production, an additional safety assessment of the paste and a quantitative determination of highly concentrated, less typical organic compounds, such as 3-pentylpiperidin-2-one, and inorganic active fluorides and phosphates are necessary.

Peak Report TIC										
Peak#	R.Time	I.Time	F.Time	Area	Area%	Height	Height%	A/H	Mark	Name
1	1.416	1.383	1.437	957773	0.70	78958	1.14	1.21		
2	11.987	11.953	12.047	168123	1.23	44928	0.65	3.74	MI	3-pentylpiperidin-2-one
3	12.451	12.420	12.523	69841	0.51	25711	0.37	2.72	MI	
4	12.545	12.517	12.603	44930	0.33	29195	0.42	1.54	MI	
5	12.820	12.777	12.940	390382	2.85	62996	0.91	6.20	MI	
6	13.453	13.430	13.500	201718	1.47	126402	1.83	1.60		
7	13.526	13.500	13.567	99003	0.72	61663	0.89	1.61	V	
8	13.597	13.580	13.697	116155	0.85	45810	0.66	2.54		3-pentylpiperidin-2-one
9	13.897	13.860	13.947	195912	1.43	76476	1.11	2.56	MI	
10	14.028	13.993	14.103	146703	1.07	56380	0.82	2.60	MI	
11	14.309	14.270	14.397	176587	1.29	64132	0.93	2.75	MI	Hexanamide, N-allyl-
12	14.691	14.680	14.763	35986	0.26	17687	0.26	2.03	MI	Dodecanamide
13	14.990	14.973	15.040	188047	1.37	60269	0.87	3.12		Decane, 1,10-diamino-,N,N,N,N'
14	15.067	15.040	15.137	1890790	13.82	1009997	14.61	1.87	V	3-pentylpiperidin-2-one
15	15.158	15.137	15.200	209205	1.53	127534	1.85	1.64	V	
16	15.673	15.633	15.793	1755311	12.83	786155	11.38	2.23		Octanamide, N-allyl-
17	16.350	16.327	16.413	160852	1.18	57340	0.83	2.81		dodecanamide, N-[3-(dimethylam
18	16.437	16.413	16.497	811168	5.93	502566	7.27	1.61	V	3-pentylpiperidin-2-one
19	16.544	16.497	16.583	127281	0.93	95756	1.39	1.33	V	
20	16.976	16.950	17.040	665259	4.86	427751	6.19	1.56		Octanamide, N-allyl-
21	17.352	17.337	17.413	48094	0.35	22641	0.33	2.12	MI	Hexadecanamide
22	17.580	17.537	17.660	1754749	12.82	687365	9.95	2.55		dodecanamide, N-[3-(dimethylam
23	17.681	17.660	17.730	474557	3.47	341933	4.95	1.39	V	3-pentylpiperidin-2-one
24	17.798	17.730	17.873	977934	7.15	637372	9.22	1.53	V	
25	18.170	18.147	18.223	350197	2.56	236085	3.42	1.48		Octanamide, N-allyl-
26	18.522	18.503	18.590	41179	0.30	18607	0.27	2.21	MI	Octadecanamide
27	18.750	18.720	18.807	606664	4.43	246340	3.56	2.46		dodecanamide, N-[3-(dimethylam
28	18.829	18.807	18.880	420118	3.07	270318	3.91	1.55	V	3-pentylpiperidin-2-one
29	18.978	18.953	19.033	342288	2.50	226790	3.28	1.51		
30	19.268	19.240	19.327	406225	2.97	247812	3.59	1.64		Octanamide, N-allyl-
31	19.563	19.540	19.637	125223	0.92	49929	0.72	2.51	MI	
32	19.836	19.797	19.967	325967	2.38	84256	1.22	3.87	MI	dodecanamide, N-[3-(dimethylam
33	20.066	20.020	20.120	106465	0.78	53675	0.78	1.98	MI	
34	20.902	20.863	20.993	154445	1.13	30128	0.44	5.13	MI	dodecanamide, N-[3-(dimethylam

Fig. 2 Results of Toothpaste Analysis in Regime 2

References

[1] Unterbrink P., Schulze zur Wiesche E., Meyer F., Fandrich P., Amaechi B. T., Enax J. Prevention of dental caries: A review on the improvements of toothpaste formulations from 1900 to 2023 // Dentistry Journal. – 2024. – Vol. 12. Is (3), 64.

[2] Kirtley K. B. Chemistry of Toothpaste: dissertation: 31.08.22 / K. B. Kirtley; Pillars at Taylor University. – 2022.

[3] O'hagan A. Modernity, beauty and the Swedish "way of life": Lifestyle marketing in Stomatol toothpaste advertisements, 1910–1940 // Journal of Historical Research in Marketing. – 2022. – Vol. 14, Is. 4, 424 – 452.

[4] Abedi M., Ghasemi Y., Nemati M. M. Nanotechnology in toothpaste: Fundamentals, trends, and safety // Heliyon. – 2024. – Vol. 10, Is. 3.

ТЕХНОЛОГІЯ СТВОРЕННЯ І ВИКОРИСТАННЯ НАНОМАГНІТНИХ ТЕКСТИЛЬНИХ МАТЕРІАЛІВ ДЛЯ СТВОРЕННЯ СМАРТ-ОДЯГУ

Микола Рябчиков*, Юлія Лемкович

¹Луцький національний технічний університет

*Corresponding author: mykola.riabchikov@lntu.edu.ua

This article presents a comprehensive study on the development of nanomagnetic textile materials based on magnetite nanoparticles for applications in smart clothing systems. Magnetite nanoparticles were synthesized through the co-precipitation method using Fe^{2+} and Fe^{3+} ions in a controlled aqueous medium, followed by deposition directly onto textile fibers including cotton, linen, and wool. The findings highlight the potential of nanomagnetic coatings as a basis for next-generation smart textiles.

Keywords: magnetite nanoparticles; smart textiles; magnetic coatings; textile functionalization; wearable sensors.

1. Вступ

Стрімкий розвиток нанотехнологій відкриває нові можливості для створення інноваційних текстильних матеріалів, здатних виконувати не лише традиційні функції, а й забезпечувати додаткові сенсорні, захисні та інтерактивні властивості. Одним із перспективних напрямів є використання магніточутливих наноструктур, зокрема наночастинок магнетиту (Fe_3O_4) [1], для формування текстильних матеріалів із керованими магнітними характеристиками. Такі матеріали можуть стати основою для смарт-одягу, що поєднує гнучкість і комфорт текстилю з функціональністю сучасних електронних систем.

Наночастинки магнетиту характеризуються унікальним комплексом фізико-хімічних властивостей – високою магнітною чутливістю, хімічною стабільністю, біосумісністю та можливістю модифікації поверхні, що робить їх особливо привабливими для текстильних застосувань [2]. Формування магнітних покріттів безпосередньо на текстильних волокнах дозволяє отримувати матеріали з новими експлуатаційними характеристиками: сенсорними, електромагнітно-захисними, теплорегулюючими та структурно-функціональними. Смарт-одяг на основі таких матеріалів має значний потенціал у медицині, спортивній індустрії, захисних системах, телекомунікаційних технологіях і побутових застосуваннях. Це актуалізує необхідність дослідження методів синтезу магнітних наночастинок, ефективних технологій їх іммобілізації на текстильних волокнах та аналізу перспектив використання одержаних структур [3].

2. Основні напрями синтезу магнітних наноскладових, нанесення на текстильні матеріали і використання для створення смарт одягу

2.1. Технологія отримання наночастинок суміші двовалентного (Fe^{2+}) і тривалентного (Fe^{3+}) заліза

Найпоширенішим класом наночастинок, що містять одночасно Fe^{2+} і Fe^{3+} , є магнетит (Fe_3O_4) – змішаний оксид заліза з валентностями Fe^{2+}/Fe^{3+} у формальному співвідношенні 1:2.

Для магнетиту формальний склад $Fe_3O_4 = FeO \cdot Fe_2O_3$ (містить Fe^{2+} і Fe^{3+}). Типовий підхід – взяти у розчин іони Fe^{2+} і Fe^{3+} у молярному співвідношенні 1:2 і осадити гідроксид(и)

сильною основою, потім при певній температурі і середовищі відбувається утворення Fe_3O_4 . Спрощена реакція процесу виглядає таким чином: $\text{Fe}^{2+} + 2\cdot\text{Fe}^{3+} + 8\cdot\text{OH}^- \rightarrow \text{Fe}_3\text{O}_4 \downarrow + 4\cdot\text{H}_2\text{O}$

Процедура виготовлення наномагнетіту включає наступні етапи. Підготовка солей, в процесі якої розчиняються FeCl_3 і FeCl_2 у дегазованій (пропущеній N_2) дистильованій воді; додається невелика кількість HCl (0.01–0.1 М) щоб запобігти гідролізу під час приготування. Температура $\approx 20\text{--}40$ °C. Дегазація передбачає продув розчину N_2/Ar 15–30 хв, і підтримку під газом під час реакції. Суміш підігрівається до 60–80 °C. Швидко додається під інтенсивним перемішуванням концентрований NH_4OH (або розчин NaOH) до досягнення $\text{pH} \approx 9\text{--}11$. При додаванні утворюється чорний осад – магнетит. Для країці витримки речовина перемішується 10–30 хв при тій же температурі, щоб забезпечити виростання кристалів та агрегацію. Для країці кристалічності можна підтримувати 60–90 °C довше. Далі слідують охолодження і промивка, відстоювання або центрифугування, багаторазове промивання дистильованою водою до нейтрального pH . Надалі речовина зберігається як вологокремоподібна суспензія або сушиться під вакуумом при низькій температурі; зберігається в захищенному від повітря і світла місці при низькій температурі для зменшення окиснення.

2.2. Технологія наноуцільнення магнетиту (Fe_3O_4) на текстильні волокна і нитки

В даному дослідженні використовувалось безпосереднє осадження на волокні. При цьому солі $\text{Fe}^{2+}/\text{Fe}^{3+}$ проникають у волокно або на поверхню; осадження магнетиту відбувається прямо на матеріалі. Переваги: хороша адгезія, заповнення волокон.

Підготовка волокна передбачає наступні кроки. Очищення – видалення восків (мастил) для натуральних волокон – пральний розчин або слабкий луг; для синтетики – розчинником (поверхнево-активним засобом). Далі відбувається активація поверхні для підвищення гідрофільноті – лужна обробка. Проводиться функціоналізація – нанесення полімерного шару з функціональними групами (амінні/карбоксильні) – для країці ковалентної фіксації NPs.

Процедура нанесення наномагнетіту на волокна включає. Розчин солі у 150–200 mL дегазованої води (з додаванням 0.01 М HCl , щоби запобігти гідролізу). Розміщення очищеного текстилю у розчині, перемішування з підтримкою 40–60 °C. Швидко додається під інтенсивним перемішуванням NH_4OH до $\text{pH} \approx 9\text{--}10$, при цьому утворюється чорний осад Fe_3O_4 прямо на волокнах. Відбувається витримка 10–30 хв при 50–80 °C для дозрівання кристалів. Матеріал виймається, ретельно промивається до нейтрального pH , промивається етиловим спиртом і висушується при 40–60 °C. Для фіксації занурюється в 1–3 % розчин полімерного зв’язуючого (PVA, PAA, поліакрилат) і прогрівається для крос-лінкінгу.

Вказані процеси були проведені для волокон з льону, вовни і бавовни. Результати представлені на мікрофотографіях (рис. 1).

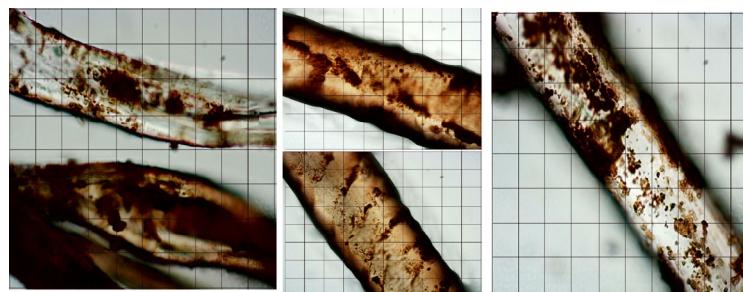


Рис. 1 Волокна з нанесеними частинками магнетиту

2.3. Можливі використання в системах смарт-одягу

Магнітні властивості одержаних матеріалів і текстильних структур можуть знайти використання в новітніх системах смарт-одягу. Магніточутливий одяг може виконувати функції сенсорного контролю, зокрема для реєстрації рухів та положення тіла (в процесі кінематики, реабілітації). Можуть бути створені сенсори деформації та тиску (рукавички-

контролери, елементи одягу для спортивного моніторингу). Можна створити одяг для відстеження дихання, серцебиття через зміни магнітного поля на принципах зміни магнітної провідності при розтягуванні або стисканні тканини.

В ряді випадків такі матеріал можуть забезпечити тепло керування шляхом створення самонагрівального одягу при індукційному підігріві (активація зовнішнім полем) або пасивного утримання тепла (магнетит збільшує теплопровідність і теплоємність тканини). Це перспективно для зимового, спортивного і військового одягу.

Матеріали з магнітними властивостями можуть бути використані для магнітного кріплення та трансформації при використанні швидкороз'ємних магнітних застібок, модульних елементів (підсилення, датчики, кабелі), що легко фіксуються на тканині. Це дозволяє гнучко модифікувати функціонал одягу. Слід відзначити можливі напрями використання в медичних і терапевтичних системах. Для таких виробів можлива магнітотерапія з локальною стимуляцією тканин, підтримка ортопедичних виробів магнітними зонами. Потенційно можливе створення одяг для доставки ліків, що реагують на магнітне поле (кероване вивільнення нанопрепаратів). Магнетит біосумісний і може використовуватися у медицині.

Магнітні волокна з покриттям наночастинками магнетиту відкривають широкі можливості для інтеграції сенсорних, захисних та функціональних систем у комфортні текстильні матеріали. Вони є перспективною основою для розробки смарт-одягу нового покоління.

3. Висновки і обговорення

У ході проведеного дослідження було підтверджено можливість ефективного синтезу наночастинок магнетиту (Fe_3O_4) з використанням іонів Fe^{2+}/Fe^{3+} та їх подальшого нанесення на текстильні волокна методом безпосереднього осадження. Отримані результати демонструють, що сформовані магнітні покриття добре фіксуються на поверхні натулярних і білкових волокон, заповнюючи нерівності та мікроструктурні дефекти, що забезпечує високу адгезію та стабільність частинок у структурі матеріалу.

Дослідження показало, що магнітні властивості отриманих матеріалів відкривають широкий спектр застосувань у сфері смарт-одягу. Зокрема, вони можуть бути використані для створення сенсорних систем контролю рухів, елементів моніторингу фізіологічних параметрів, теплорегулюючих структур, електромагнітних екранів, магнітних кріплень і модульних систем. Завдяки біосумісності магнетиту такі матеріали мають перспективу використання у медичних виробах, терапевтичних пов'язках та інтелектуальних текстильних інтерфейсах.

Список використаних джерел

[1] Riabchykov, M., Tkachuk, O., Nazarchuk, L., Alexandrov, A. Conditions for the open pores formation in medical textile materials for the treatment of wounds using iron oxide nanopowders. *Materials Research Express*. 10 (1), 015401, 2023 <https://doi.org/10.1088/2053-1591/acadcf>.

[2] Riabchykov, M., Tsykhanovska, I. & Alexandrov, A. Justification of technologies for the synthesis of mineral nanoparticles for the creation of magnetic smart textile. *J Mater Sci*, 58, 7244–7256, 2023. <https://doi.org/10.1007/s10853-023-08463-x>

[3] Xu, Z., Zhang, C., Wang, F. et al. Smart Textiles for Personalized Sports and Healthcare. *Nano-Micro Lett.* 17, 232, 2025. <https://doi.org/10.1007/s40820-025-01749-6>.

СЕКЦІЯ 3 / SECTION 3

Технології переробки, утилізації та повторного використання відходів

Technologies for recycling,
waste utilization, and reuse

REIMAGINING WASTE AS RESOURCE: FINANCIAL RISK AND CUSTOMS LOGISTICS IN CIRCULAR TECHNOLOGY SYSTEMS

Ilona Dumanska^{1*}

¹*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

*Corresponding author: dumanskai@khnmu.edu.ua, 29016-UA, Instytutska Street, 11
Khmelnitskyi, Ukraine

The paper explores how Digital Twins and Decision Support Systems enhance waste valorization by enabling real-time simulation, lifecycle analysis, and multi-scenario planning. Integrating AI, blockchain, and improved customs logistics boosts transparency, reduces delays, and supports compliance with global regulations. These innovations advance SDGs, strengthen circular economy models, and transform waste into an economically valuable resource.

Keywords: waste, digital twins, financial risks, customs logistics, circular technology.

1. Introduction

This introduction frames the subsequent discourse by delineating the conceptual and practical intersections of digital innovation, financial risk assessment, and intricate customs logistics within the overarching framework of circular economy principles. It is imperative but also a profound economic opportunity to foster resilient and sustainable industrial ecosystems [1] [2]. This transformative vision emphasizes the integration of digital technologies to mitigate financial risks and optimize resource flows, thereby addressing global challenges such as resource depletion, climate change, and waste management [3]. This paradigm shift, supported by advanced digital technologies, necessitates a comprehensive rethinking of product lifecycles, from design to end-of-life management, to maximize material utility and minimize environmental impact [4]. This paper further explores how digital twins, blockchain, and AI-driven analytics can bridge the existing gaps in regulatory frameworks and financial mechanisms, enabling a more robust circular economy [5]. Such an approach aligns with the core tenets of the circular economy, which advocates for extending product lifecycles through strategies like reuse, recycling, and refurbishment, thereby transforming waste into valuable inputs for new production cycles [6].

2. Results and discussion

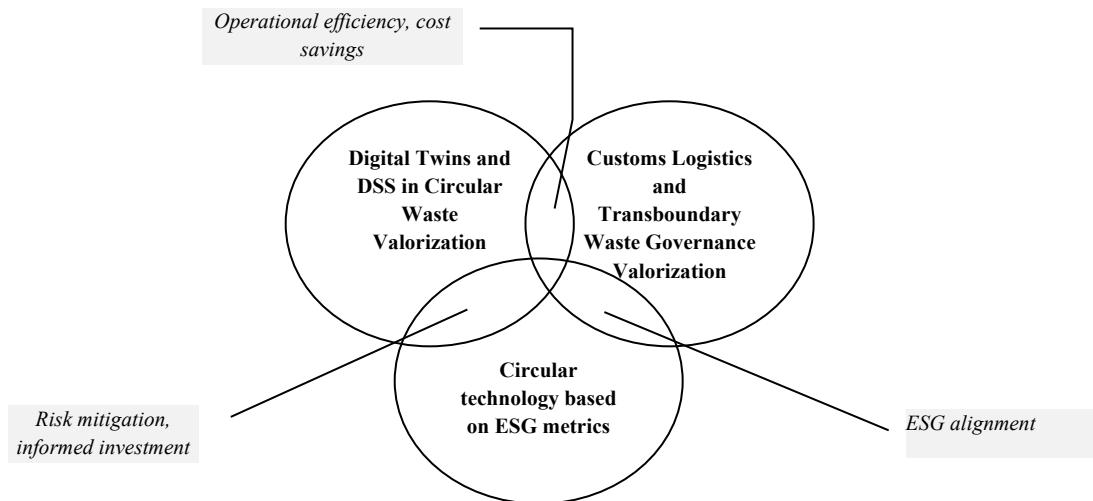
2.1 Digital Twins and DSS in Circular Waste Valorization

Digital Twins (DTs) are virtual replicas of physical systems that enable real-time monitoring, simulation, and optimization of industrial processes. In the context of waste valorization, DTs allow for: (1) Material flow mapping: Tracking the lifecycle of inputs and outputs across production and recycling stages; (2) Predictive maintenance: (3) Anticipating equipment failures to reduce downtime and improve throughput; (4) Scenario testing: Simulating the impact of design changes or policy shifts on waste generation and recovery.

Decision Support Systems (DSS) complement DTs by offering multi-criteria analysis tools that integrate financial, environmental, and regulatory data. These platforms support: (1) Risk modeling: Evaluating exposure to market volatility, regulatory penalties, and supply chain disruptions; (2) Investment prioritization: Ranking circular economy projects based on ESG indicators and return on investment; (3) Policy simulation: Assessing the implications of carbon pricing, extended producer responsibility (EPR), and waste import/export restrictions.

The combined use of DTs and DSS equips organizations with a holistic digital infrastructure that simultaneously enhances operational efficiency and strengthens strategic decision-making in circular waste valorization. As illustrated in Table 1, each tool contributes distinct functionalities that, when integrated, create a synergistic framework: DTs generate technical insights through real-

time monitoring and simulation, while DSS platforms transform these insights into actionable strategies by aligning them with financial, environmental, and regulatory priorities. This interplay ensures that operational data is not only captured and optimized but also embedded into long-term planning and investment decisions.


Table 1 Key Functions of Digital Tools in Circular Systems

Tool	Functionality	Strategic Benefit
Digital Twins	Real-time simulation, lifecycle tracking	Operational efficiency, cost savings
Decision Support	Scenario modeling, ESG alignment	Risk mitigation, informed investment

By integrating these tools, industries can move beyond reactive waste management toward proactive circular strategies. Digital Twins provide the operational backbone for monitoring and optimization, while DSS ensures that sustainability, compliance, and profitability are embedded into decision-making. Together, they form a critical foundation for advancing circular economy practices in waste valorization.

2.2 Customs Logistics and Transboundary Waste Governance

The integration of digital technologies into circular economy frameworks represents a pivotal step toward building resilient, resource-efficient, and sustainable industrial ecosystems (Fig. 1). The movement of waste across borders is governed by complex legal and logistical frameworks. Customs authorities must balance trade facilitation with environmental protection and regional agreements.

Fig. 1 Digital Integration in Circular Customs Logistics

Innovations in Customs Logistics include: (1) Blockchain-based tracking: Ensures tamper-proof documentation and end-to-end traceability of waste shipments; (2) AI-enhanced risk profiling: Identifies high-risk consignments for targeted inspection, reducing delays and resource use; (3) Harmonized protocols: Streamline documentation and inspection procedures across jurisdictions.

These tools not only enhance compliance but also reduce the administrative burden on exporters, importers, and regulators. They are particularly valuable in managing hazardous waste, e-waste, and secondary raw materials that require special handling.

2.3 Strategic Alignment with SDGs and ESG

The integration of digital tools into circular systems advances several SDGs. Specifically, SDG 9 is supported by fostering innovation in industrial processes and infrastructure, while SDG 12 is promoted through responsible consumption, sustainable production, and waste reduction, as illustrated in Table 2.

Moreover, ESG frameworks provide a lens for evaluating the long-term sustainability and resilience of circular investments. Companies that embed ESG metrics into their waste strategies are better positioned to attract green financing, comply with disclosure regulations, and build stakeholder trust.

Table 2 Alignment of Innovations with SDGs and ESG

Innovation Area	SDG Alignment	ESG Dimension
Digital Twins & DSS	SDG 9, SDG 12	Governance, Environment
Customs Logistics	SDG 12	Governance, Social

Digital twins and decision support systems improve efficiency and risk management, while innovations in customs logistics enhance compliance and transparency in transboundary waste governance. Together, these tools optimize material flows, reduce uncertainties, and accelerate the transition to circularity. Aligning them with SDGs and ESG frameworks highlights their broader societal relevance, enabling companies and policymakers to attract green financing, meet disclosure requirements, and build stakeholder trust.

Looking ahead, priorities include: (1) regulatory harmonization through interoperable standards; (2) financial innovation via expanded green instruments; (3) technological advancement with AI-driven analytics; and (4) cross-sector collaboration to scale adoption. Ultimately, the convergence of digital innovation and circular economy principles provides a transformative pathway to address climate change, resource scarcity, and waste management, moving societies toward a regenerative economic model.

Acknowledgment

The author thanks Khmelnytskyi National University and the Department of Chemistry and Chemical Engineering for supporting interdisciplinary research and providing essential resources. Gratitude is also extended to the ITMIE 2025 organizing committee for the opportunity to present this work and engage in dialogue on sustainable technological innovation.

References

- [1] S. K. Chishty, “Economic and Environmental Efficiencies of Organizations: Role of Technological Advancements and Circular Economy Practices,” *Sustainability*, vol. 15, no. 22, p. 15935, Nov. 2023, doi: 10.3390/su152215935.
- [2] C. Fogarassy and D. C. Finger, “Theoretical and Practical Approaches of Circular Economy for Business Models and Technological Solutions,” *Resources*, vol. 9, no. 6, p. 76, Jun. 2020, doi: 10.3390/resources9060076.
- [3] L. Weng, “Exploring the Digital Circular Economy: A Path to Sustainable Innovation,” *SSRN Electronic Journal*, Jan. 2025, doi: 10.2139/ssrn.5062437.
- [4] F. D. Felice and A. Petrillo, “Product Lifecycle: Social and Political Reflections from the Digital and Sustainable Perspectives,” in *IntechOpen eBooks*, IntechOpen, 2021. doi: 10.5772/intechopen.100938.
- [5] N. Teixeira, “Circular Economy Perspectives: Challenges, Innovations, and Sustainable Futures,” *Research Square (Research Square)*, May 2025, doi: 10.21203/rs.3.rs-6529978/v1.
- [6] Z. A. Ali, M. Zain, R. Hasan, M. S. Pathan, H. AlSalman, and F. Almisned, “Digital twins: cornerstone to circular economy and sustainability goals,” *Environment Development and Sustainability*, May 2025, doi: 10.1007/s10668-025-06221-4.

ОЧИЩЕННЯ ВІДПРАЦЬОВАНИХ ТРАНСФОРМАТОРНИХ ОЛИВ ПРИРОДНИМ СОРБЕНТОМ

Світлана Підгайчук^{1*}, Оксана Смачило²,

Світлана Смутко³, Наталія Машовець⁴, Вікторія Шевчук⁵

^{1,3,4}Хмельницький національний університет, Хмельницький, Україна

²Відкритий міжнародний університет розвитку людини «Україна», Київ, Україна

⁵Національна академія Державної прикордонної служби України

імені Богдана Хмельницького, Україна

*Автор для листування: svitlankayar@gmail.com, Хмельницький, 29008, Україна

The paper presents the results of the purification of used transformer oil with a natural sorbent. The parameters by which the efficiency of oil purification can be determined are determined and recommendations are given regarding the technology of oil regeneration.

Keywords: transformer oils, acid number, optical density, sorbent, relative viscosity.

1. Вступ

В трансформаторах, які працюють в умовах підвищеного нагріву та навантаження, під впливом молекулярного кисню відбувається окислення вуглеводнів, в оливі накопичуються продукти окислення та інші домішки. Старіння олив – це утворення низько- та високомолекулярних продуктів окислення, що з часом супроводжується підвищением вмістом води, утворенням осаду, ростом діелектричних втрат, потемнінням олив. Ці домішки погіршують електроізоляційні властивості масла, змінюють його в'язкість та температуру кипіння, що може призвести до передчасного виходу трансформатора з ладу.

Крім того, сьогодні існують проблеми, пов'язані з руйнуванням трансформаторних підстанцій та труднощами у поповненні запасів силікагелю, який використовується для очищення трансформаторної оліви, ускладнюються завдання відновлення олив. Дослідження природних сорбентів, зокрема сапонітової глини, для заміни силікагелю є актуальним завданням, оскільки це дозволить використовувати місцеві ресурси для технологічних потреб.

Мета роботи полягала у вивченні можливості очищення відпрацьованих трансформаторних олив за допомогою сапонітових глин. Методи дослідження, що були застосовані у роботі – це визначення оптичної густини чистої, відпрацьованої та обробленої сапонітovoю глиною олив, а також визначення кислотності олив, умовної в'язкості та густини.

2. Матеріали та результати досліджень

В роботі використано зразки сапонітovoї глини Ташківського родовища, поблизу міста Славути Хмельницької області. Зразки розмелені до дрібнодисперсного порошку та відфракціоновані ситовим методом до фракції ≤ 1 мм.

В роботі досліджено очистку трьох марок трансформаторних олив. Очистка відпрацьованої трансформаторної оліви (ВТО) сапонітovoю глиною проводилася в кілька етапів:

1 Змішування ВТО з сапонітовою глиною в різних співвідношеннях.

Після цього застосувалося ультразвукове перемішування (частота 15–50 кГц).

2 Нагрівання зразків на водяній бані

3 Центрифугування.

4 Декантація очищеної трансформаторної оліви (ОТО)

Очищення було проведено активованим і неактивованим сапонітом.

Очищення глиною фракцією 1 мм та 200 мкм відпрацьованої оліви марки Т1500 (ВТО3) на початковому етапі було проведено без ультразвукового перемішування та нагрівання зразків.

Для кількісної оцінки результатів очищення визначалася низка показників якості олив – це густина, в'язкість, оптична густина та кислотне число.

На основі проведених досліджень підтверджено літературні дані щодо показників густини та умовної в'язкості оліви. Ці показники не є інформативними. Це означає, що за цими показниками оцінити ступінь очистки оліви неможливо (табл. 1).

Таблиця 1 Результати дослідження густини та умовної в'язкості олів

Показник	Марки чистої трансформаторної оліви (ЧТО1 та ЧТО2)		Відпрацьована трансформаторна оліва (ВТО1, ВТО2)		Очищена трансформаторна оліва (ОТО1, ОТО2)	
	ГК-20 ЧТО1	03-15-м-20-7.5-2017 ЧТО2	ВТО1	ВТО2	ОТО1	ОТО2
Густина, кг/м ³ за $t=16$ °C	856	850	870	876	866	859
Густина, кг/м ³ за $t=20$ °C	853,4	847,4	867,4	873,4	863,4	856,4
Умовна в'язкість, с	14,82	—	14,39	—	—	—

Проведені дослідження оптичної густини та кислотного числа довели, що навіть очистка неактивованим сапонітом є ефективною.

Співідношення оліва – глина 3:1 є достатнім для зниження оптичної густини. Співідношення оліва – глина 5:1 є недостатнім: оптична густина не змінилася (0,16). Ефективною є очистка активованим сапонітом при співідношенні компонентів 1:1: оптична густина знизилася з 1,1 до 0,065. Найбільший ефект отримано при застосуванні глини з фракцією 200 мкм.

Таблиця 2 Результати очищення відпрацьованої оліви за допомогою сапонітової глини

Відпрацьована оліва (показник для відпрацьованої оліви)	Кислотне число, мг КОН/г ВТО 2-0,09; ВТО1-0,048 ВТО3-0,14	Оптична густина ВТО2 0,85–1,1 Оптична густина ВТО1 0,16 Оптична густина ВТО3 0,2
	Коефіцієнт, зменшення кислотності по відношенню до відпрацьованої оліви	Коефіцієнт, зменшення оптичної густини по відношенню до відпрацьованої оліви
Очищена трансформаторна оліва (ОТО2) природним сапонітом (співвідношення 1:1)	Зменшився ~ у 4,7 рази	Зменшився ~ у 2,4–3,05 рази
Очищена трансформаторна оліва (ОТО3) природним сапонітом (1мм) (2:1)	Зменшився у 1,48 рази	Зменшився ~ у 0,9 рази
Очищена трансформаторна оліва (ОТО3) природним сапонітом (200мкм) (2:1)	Зменшився у 6,36 рази	Зменшився ~ у 8 разів
Очищена трансформаторна оліва (ОТО2) активованим сапонітом (співвідношення 1:1)	—	Зменшився ~ у 13,1–16,9 разів
Очищена трансформаторна оліва (ОТО1) активованим сапонітом (співвідношення 3:1)	Зменшився ~ у 2,5 рази	Зменшився ~ у 2,9 разів

Природній сапоніт здатен регенерувати ВТО [1], однак регенерація кислотоактивованим природним мінералом є більш ефективною, що довів показник оптичної густини ВТО [2]. Кислотна активація дозволила надати природному сапоніту активну адсорбуючу здатність. Ще більш ефективно зарекомендувала себе глина з фракцією 200 мкм. Досліджено співвідношення компонентів 2:1.

Наступним етапом проведення досліджень було вдосконалення запропонованого порядку проведення очистки трансформаторної оліви та підбір більш раціонального співвідношення оліва-глина.

Для підвищення ефективності процесу очищення, більш повного розкриття поверхні сорбенту, проведено підігрів відпрацьованої трансформаторної оліви марки Т1500 (ВТО3) до температури 90 °C, після чого добавлено сапоніт двох фракцій 1 мм та 200 мкм. Проведена термічна обробка зразків при температурі 90 °C дозволила досягнути позитивних результатів при використанні меншої кількості сорбенту. Так, співвідношення 10:1 покращило оптичну густину в 2 рази порівняно з оптичною густиною неочищеної трансформаторної оліви. Зменшення кислотного числа ОТО3 дозволяє зробити висновок, що проведена термічна обробка зразків при температурі 90 °C є ефективною і дозволяє досягнути мінімального кислотного числа при використанні сапоніту фракцією 200 мкм та дає можливість суттєво зменшити обсяги сорбенту. Ефективними є співвідношення 4:1; 10:1. Так, співвідношення 10:1 може бути ефективнішим, ніж співвідношення 2:1, але при цьому необхідно проводити термічну обробку зразків.

Список використаних джерел

[1] Патент на корисну модель 156695 UA, МПК C10M175/00; C10N40/16. Спосіб очищення трансформаторних масел / Підгайчук С. Я., Смутко С. В.; Смачило О. В., Параска О. А.; Дробот О. С., Корчев В. Б. – № 2024 00782 ; заявл. 15.02.2024 ; опубл. 24.07.2024, Бюл. № 30, 2024. 4 с.

[2] Патент на корисну модель 159713 UA, МПК C10M175/02; H01G4/18. Спосіб очищення трансформаторних масел кислотоактивованим адсорбентом / Підгайчук С. Я., Смутко С. В., Смачило О. В., Параска О. А., Корчев В. Б., Дробот О. С., Нестер А. А. – № 2024 05951 ; заявл. 16.12.2024; Бюл. № 26, 2025.

ПЕРЕРОБКА, УТИЛІЗАЦІЯ ТА ПОВТОРНЕ ВИКОРИСТАННЯ ВІДХОДІВ: ЕКОЛОГІЧНІ ІННОВАЦІЇ ПРОЄКТІВ REWAY ТА ECONOTES

Наталія Боровик¹

¹Державний навчальний заклад «Лісоводський професійний аграрний ліцей»

The article examines modern technologies for recycling and reusing waste as a key tool for reducing the environmental burden on the environment. Using the example of ecological projects of mini-companies ReWay and EcoNotes, the practical aspects of implementing the upcycling concept are analyzed, as well as the socio-cultural impact on the formation of environmental awareness. The environmental effect of implementing the EcoNotes project, aimed at making travel notebooks from recycled paper and secondary materials, is studied. The issue of excessive use of primary cellulose is considered, examples of resource conservation and CO₂ emission reduction are given. The EcoNotes project is positioned as an innovative initiative in the field of circular economy and the formation of ecological culture.

Keywords: waste, recycling, recycling, upcycling, ecological projects, sustainable development, recycled paper, ecological notebooks, circular economy.

1. Introduction

Текстильна промисловість є одним із найбільших джерел відходів у світі. Щороку утворюються мільйони тонн текстильних матеріалів, які потрапляють на сміттєзвалища, створюючи довготривале навантаження на екосистеми. Традиційні методи утилізації (спалювання, захоронення) призводять до додаткових викидів парникових газів та токсичних речовин. Актуальним стає пошук інноваційних рішень, що дозволяють не лише зменшити кількість відходів, а й створити нові продукти з доданою вартістю. Одним із таких рішень є upcycling – креативна переробка, яка поєднує екологічність та дизайн

2. Results and discussion

Deep learning, which is a subset of AI algorithms, is widely used in medical imaging. The **Технології переробки та повторного використання:**

1. Upcycling. Використання старих джинсів, курток, залишків виробництва. Рятування дрібних елементів (бліскавки, гудзики, наповнювачі). Створення нових виробів з унікальним дизайном.

2. Екологічна утилізація. Зменшення кількості текстилю на звалищах. Зниження викидів CO₂ завдяки відмові від виробництва нових матеріалів.

3. Соціально-культурний аспект. Формування екологічної культури через спільноти у соціальних мережах. Підтримка локальних ініціатив та освітніх програм.

Екологічний ефект

Один еко-шопер = 0,3 кг врятованого текстилю та до 1 кг не виробленого CO₂. 100 еко-шoperів = 360 кг CO₂, які не потрапили в атмосферу. Масове впровадження технології може зменшити навантаження на довкілля на десятки тисяч тонн щороку.

Практична реалізація: ReWay та EcoNotes

ReWay: виробництво органайзерів, косметичок, аптечок, подушок, килимків та еко-шoperів.

EcoNotes: створення екологічних блокнотів із переробленого паперу для подорожей.

Обидві ініціативи поєднують екологічність, практичність та сучасний дизайн, формуючи нову культуру споживання.

Результати дослідження. Один блокнот EcoNotes економить до 0,5 кг деревини. Використання переробленого паперу зменшує споживання води на 30–40 %. Кожен блокнот – це мінус паперові та текстильні залишки на сміттєзвалищі. Масове виробництво EcoNotes може скоротити сотні кілограмів відходів щороку. Виробництво з переробленого паперу зменшує викиди парникових газів на 20–30 %.

1000 кнотів EcoNotes = до 500 кг неутвореного CO₂.

EcoNotes поєднує екологічність із практичністю. Блокноти не лише зменшують навантаження на довкілля, а й формують нову культуру відповідального споживання серед мандрівників та студентів. Проект відповідає цілям сталого розвитку ООН, зокрема: ціль 12: відповідальне споживання та виробництво, ціль 13: боротьба зі зміною клімату.

Висновки

1. Технології переробки та повторного використання текстильних відходів є ефективним інструментом зменшення екологічного навантаження.

2. Upcycling дозволяє не лише зберегти ресурси, а й створити унікальні продукти з високою споживчою цінністю.

3. Соціальні ініціативи, такі як ReWay та EcoNotes, формують нову екологічну культуру та сприяють розвитку сталого споживання.

4. Масове впровадження подібних практик може стати важливим кроком у досягненні цілей сталого розвитку та збереженні довкілля.

5. EcoNotes є прикладом успішної реалізації принципів циркулярної економіки та має потенціал для масштабування у сфері туризму та освіти.

Список використаних джерел

[1] Які технології та обладнання використовують для утилізації і переробки вторинних ресурсів? | Журнал ECOBUSINESS. Журнал ECOBUSINESS. Екологія підприємства | [ecolog-ua.com](https://ecolog-ua.com/news/yaki-tehnologiyi-ta-obladnannya-vykorystovuyut-dlya-utylizaciyi-i-pererobky-vtorynnyyh-resursiv). URL: <https://ecolog-ua.com/news/yaki-tehnologiyi-ta-obladnannya-vykorystovuyut-dlya-utylizaciyi-i-pererobky-vtorynnyyh-resursiv> (дата звернення: 26.11.2025).

[2] Інноваційні підходи до переробки відходів у місцевих громадах – Соціальна країна. Соціальна країна. URL: <https://welfare.green/innovacijni-pidkhodi-do-pererobki-vidkhodiv-u-miscevikh-gromadakh/> (дата звернення: 26.11.2025).

УТИЛІЗАЦІЯ ХАРЧОВИХ ВІДХОДІВ

Іванна Гурна

Державний навчальний заклад «Лісоводський професійний аграрний ліцей»

The article explores the challenges and importance of proper food waste disposal. It highlights legal requirements, environmental impacts such as methane emissions, and the role of HACCP standards in managing waste. Practical solutions like composting and responsible disposal are discussed to reduce carbon footprint, prevent pollution, and conserve resources.

Keywords: food waste, disposal, HACCP, sustainability, methane emissions, composting, environmental impact, waste management, carbon footprint, recycling.

У процесі свого розвитку людство нарівні з виробництвом необхідних для його життєдіяльності предметів (будь то знаряддя виробництва, предмети побуту або продукти харчування) стикається з проблемою утилізації продукції, що прийшла в непридатність. І якщо з утилізацією продуктів неорганічного походження (метал, скло, папір, окремі види пластмас та ін.) люди навчилися справлятися без втрат для себе (навіть з вигодою), то з харчовими відходами справа йде складніше.

Свіжість харчових продуктів – один із важливих факторів їх якості. У дитячих закладах освіти, відпочинку та оздоровлення це питання належить до компетенції відповідальної особи, яка здійснює контроль за умовами та строками зберігання харчових продуктів, керуючись встановленим МОЗ.

Держпродспоживслужба нагадує, що неякісна та небезпечна продукція підлягає обов'язковому вилученню з обігу. Оператори ринку під час поводження з харчовими відходами (неїстівні субпродукти та інші залишки) повинні:

- якомога швидше видаляти харчові відходи з приміщення, де є харчові продукти;
- розміщувати харчові відходи у закритих контейнерах, сконструйованих таким чином, щоб забезпечити максимальний рівень захисту та їх дезінфекцію;
- дотримуватися відповідних положень законодавства щодо зберігання і утилізації (знищення) харчових та інших відходів та/або мати договори щодо їх утилізації (знищення).

Харчові відходи знищуються відповідно до норм діючого законодавства. Згідно із вимогами щодо розробки, впровадження та застосування постійно діючих процедур, заснованих на принципах Системи управління безпечністю харчових продуктів (HACCP), затверджених наказом Міністерства аграрної політики та продовольства України від 01 жовтня 2012 року № 590 програма-передумова системи HACCP щодо поводження з відходами виробництва та сміттям, їх збору та видалення з потужності повинна забезпечити:

- виконання операторами ринку усіх передбачених законодавством вимог щодо утилізації відходів;
- інформацію про місця збору відходів у зонах поводження з харчовими продуктами;

• визначення графіків та способів вивезення відходів з приміщень, у яких здійснюється поводження з харчовими продуктами, з метою уникнення їх накопичення. При цьому має враховуватися можливість перехресного забруднення продуктів під час їх вивезення;

- місця зберігання відходів за межами приміщень, де здійснюються операції з харчовими продуктами, вимоги щодо зберігання відходів;
- стан контейнерів, ємностей для відходів, їх маркування, очищення, миття та дезінфекцію;
- вивезення відходів з території потужності та їх утилізацію, у тому числі за укладеними відповідними угодами.

Чи замислювалися ви коли-небудь про те, що відбувається з залишками їжі після того, як вони потрапляють у смітник? Якщо про шкоду й правильну утилізацію різноманітних побутових відходів відомо більше, то про харчове сміття говорять не так часто. Адже багато хто думає, що викинута їжа розкладається й не несе ніякої шкоди. На жаль, більшість харчових відходів потрапляє на звалища зокрема стихійні, де вони виділяють метан. Дуже багато метану. А це – парниковий газ, потужніший за CO_2 .

Але що, якби ми могли перетворити ці відходи на щось корисне? Тож у цьому блозі ми розповімо, чим особливий збір й утилізація харчових відходів й поділимось простими й ефективними способами утилізації, що допоможуть зменшити свій вуглецевий слід і заощадити гроші.

Навіщо утилізувати харчові відходи? Харчові відходи це будь-яка їжа, яку ми більше не можемо або не хочемо їсти – від залишків обіду до зіпсованих фруктів чи овочів.

Щороку в світі на звалища потрапляє близько 1.3 мільярда тонн їжі, що еквівалентно викидам парникових газів від приблизно 300 мільйонів автомобілів на дорозі протягом одного року. Щоб розв'язати цю проблему, у багатьох країнах діє закон про утилізацію харчових відходів, що вимагає від підприємств і господарств правильно утилізувати своє органічне сміття.

Коли ми утилізуємо харчові відходи, то зменшуємо кількість сміття, яке потрапляє на звалища, де воно виділяє шкідливі гази, такі як метан. Це також зберігає цінні ресурси, адже багато харчових відходів, як овочеві обрізки чи залишки фруктів, можна переробити в компост – чудове добриво для рослин.

Що буде, якщо не утилізувати харчові відходи? Якщо харчові відходи не утилізувати належним чином, це матиме глобальний вплив на планету й здоров'я кожного з нас, адже шкода харчових відходів – це те, чого ми часто не усвідомлюємо.

Зміна клімату. Харчові відходи, що розкладаються на звалищах, виділяють парниковий газ, метан, який провокує зміни клімату. Метан у 25 разів сильніший за вуглекислий газ, в утриманні тепла в атмосфері. А зміна клімату веде до екстремальних умов, таких як урагани, повені й посухи.

Забруднення довкілля. Харчові відходи на смітниках і звалищах забруднюють ґрунтові й поверхневі води, що шкодить водним екосистемам і зрештою здоров'ю людини. Крім того, харчові відходи приваблюють шкідників – комах і гризунів, які можуть переносити хвороби.

Марна тратата ресурсів. Виробництво їжі потребує величезної кількості ресурсів – води, енергії, земельних площ. Наприклад, для виробництва одного кілограма яловичини потрібно близько 15 000 л води. Грамотний вивіз й утилізація харчових відходів мотивує до усвідомленого споживання.

Економічні втрати. У всьому світі щорічно викидають їжу на суму близько 1 трильйона доларів. Ці гроші можна було б використовувати для інших цілей, таких як охорона здоров'я чи освіта.

Як проходить утилізація харчових відходів? В Україні використовують різні способи утилізації харчових відходів, включаючи компостування, біогазові установки й переробку на корм для тварин.

Компостування – один із найпопулярніших методів утилізації, адже воно дає можливість отримати з органічних відходів цінне добриво для ґрунту. Така утилізація рослинних і харчових відходів – не тільки хороший спосіб для збагачення ґрунту корисними мікроелементами, він також зменшує потребу у використанні хімічних добрив.

Біогазові установки – ще один ефективний спосіб. Така утилізація харчових відходів перетворює органічну масу в біогаз, який можна використовувати як альтернативне джерело енергії. Це не тільки зменшує залежність від традиційних видів палива, але й знижує викиди парникових газів. Також замість того, щоб викидати харчові відходи на звалища, з них можна виготовити цінний ресурс – корм для сільськогосподарських тварин.

Етапи утилізації харчових відходів. Правила утилізації харчових відходів включають декілька етапів, починаючи від сортування в окремі контейнери до переробки та компостування. Загалом можна виокремити такі етапи:

Збір і сортування: харчові відходи збирають окремо від інших видів сміття й сортують за типом в окремий контейнер для утилізації харчових відходів.

Переробка: можна застосувати один зі способів – компостування чи анаеробне перетворення харчових відходів на біогаз.

Використання: компост можна успішно використовувати як добриво, а біогаз – як екологічно чисте джерело енергії.

Продукти, що підлягають утилізації. Більшість харчових відходів можна утилізувати, включаючи овочі, фрукти, хліб, м'ясо, рибу, молочні продукти, яйця, чайні пакетики й кавову гущу. Однак, деякі продукти, такі як масло або жир, потрібно утилізувати окремо. Це пов'язано з тим, що їхня консистенція може перешкоджати процесам переробки.

Насамкінець, утилізація харчових відходів це важливий крок для захисту довкілля. Й ось кілька порад, як вже сьогодні почати використовувати такі відходи правильно.

- Плануйте свої закупівлі й купуйте стільки їжі, скільки ви можете з'їсти.
- Зберігайте їжу належним чином, щоб вона залишалася свіжою довше.
- Використовуйте залишки їжі для приготування інших страв.
- Віддайте надлишок їжі на благодійність або в притулок для безпритульних.
- Сортуйте харчові залишки в окрему ємність для збору сміття.
- Компостуйте відсортовану їжу, навіть якщо у вас зовсім маленька клумба під будинком, адже користі з цього буде значно більше.

Утилізація харчових відходів і продуктів харчування

Навіщо утилізувати харчові відходи. Гниття органічних залишків на звалищах неконтрольовано забруднює ґрунти і води, губить флору і фауну місцевості. Крім того, упаковка продукції часто виготовлена з елементів що довго розкладаються, які не можуть нейтралізувати шкідливу дію без переробки. Утилізація продуктів харчування проводиться за спеціальною технологією, відповідно до нормативів, правил та вимог з охорони навколишнього середовища

Процес переробки має такі особливості:

- вивезення зіпсованої продукції з певною періодичністю або за окремою домовленістю;
- доставка відходів на територію спеціального підприємства, де буде проведена переробка;
- поділ упаковки і самого товару, визначення та сортування органічних і неорганічних матеріалів;
- розміщення частини продукції в компостних ямах, використання упаковки для вторинного виробництва.

Утилізація харчових відходів

Утилізація харчових відходів здійснюється декількома способами:

- подрібнення в дробарці, пресування;
- підгодівля диким тваринам; – слив рідких відходів на очисні споруди.

Відходи виробництва смакових продуктів. Харчові та смакові відходи – це продукти харчування, що втратили свої споживчі властивості в процесі їх виробництва, переробки, вживання або зберігання. Якщо до харчових продуктів відносять власне продукти харчування, то смакові продукти – це чай, кава, прянощі, приправи, харчові кислоти, а також тютюн і алкоголь. Джерела утворення даних відходів – харчова промисловість, домогосподарства, кафе, ресторани, школи, лікарні.

Харчові відходи не завдають істотної шкоди природному середовищу – ними харчуються різні організми. Однак вони мають високу вологість (в середньому близько 80 %), швидко прокисають, загнивають і стають джерелом інфекційних захворювань. Гниючі продукти залучають переносників хвороб – мух, тарганів, гризунів.

Етапи утилізації харчових і смакових відходів:

1. Подрібнення відходів в дробарці;
2. Використання подрібнених продуктів у виробництві цементу.

Відходи виробництва молочних продуктів

При переробці молока для виготовлення масла, сиру, сметани і іншій молочної продукції з'являються побічні продукти. Крім того, у виробництві часто утворюється прострочена або бракована продукція. І, незважаючи на те, що вони не є небезпечними для здоров'я людини або екології, їх необхідно якимось чином утилізувати. При скиданні в водойми відходів молочного виробництва гине вся водна мікрофлора, а через кілька днів, коли відбувається закисання молока, з'являється різкий неприємний запах. Тому для знищення побічних продуктів молочного виробництва застосовуються спеціальні технології утилізації харчових відходів промислового типу:

- пресування;
- використання відходів на годування тварин.

Неліквіди продуктів харчування. Неліквідні продуктові товари утворюються на підприємствах з виробництва та продажу продуктів. До них відносяться браковані або неякісні товари, а також товари з вичерпаним терміном придатності. Вони підлягають утилізації як харчові відходи. Щоб уникнути гниття, прокидання, розвитку патогенної мікрофлори їх необхідно своєчасно знищити.

Цікаво, що пиво може бути використано не тільки в якості напою, але і для інших цілей. Наприклад, пиво – ідеальний засіб для укладання волосся. Запах пива повністю зникає вже через годину, а ефект від його застосування залишиться надовго.

Список використаних джерел

[1] Н. Г. Вітер., Кавун Е. М. «Утилізація та поводження з відходами». Наукова брошура для організації лабораторно-практичних та семінарських занять студентів агрономічного факультету денної та заочної форми навчання з спеціальності 7.04010601 «Екологія та охорона навколошнього середовища». Вінницький національний аграрний університет, 2015. – 180 с.

[2] Віра Тузяк. Теоретичні основи утилізації промислових відходів та синтезу з них нових будівельних матеріалів. Знешкодження отруйних токсичних речовин, радіоактивних відходів. Видавництва центр Європи 248 с. (ілюстрації, таблиці, схеми) – 2011.

[3] Утилізація та рекуперація відходів. Методичні рекомендації до практичних занять. Укладачі: Кропівна А. В., Молокост Л.А. – Кропивницький, ЦНТУ, 2023, с. 40.

RATIONAL TECHNOLOGIES FOR THE DISPOSAL OF TEXTILE WASTE WITH FURTHER USE IN THE PRODUCTION OF SPECIAL-PURPOSE MATERIALS

Tetiana Ishchuk^{1*}, Tetiana Ivanishena²

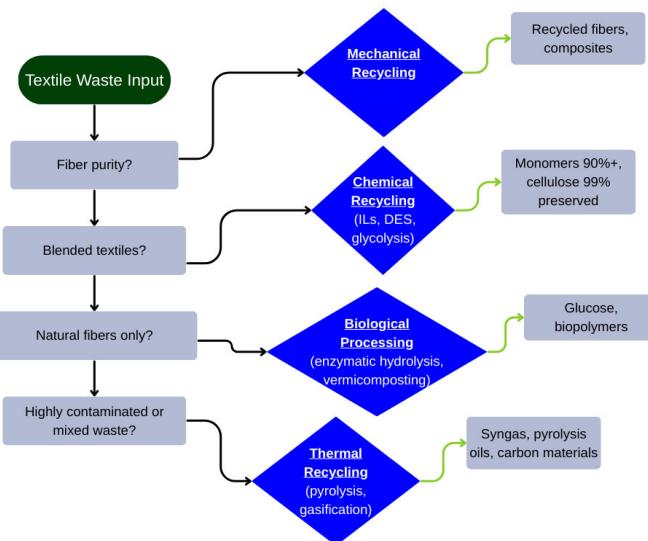
^{1,2}*Khmelnytskyi National University, Khmelnytskyi, Ukraine*

*Corresponding author: *ishchuk.tetiana@khnmu.edu.ua, Khmelnytskyi, 29008, Ukraine*

The results of complex research review modern textile waste recycling technologies (mechanical, chemical, biological, thermal) integrated with advanced sorting systems. Focus is on using recycled products in special-purpose applications such as automotive and aerospace composites, filtration membranes, protective clothing, adsorbents, and smart materials to reduce environmental impact and create high-value products.

Keywords: textile waste, recycling technologies, chemical recycling, mechanical recycling, composite materials.

1. Introduction


The global textile sector continues to grow rapidly, leading to a significant increase in waste generation. Current estimates indicate that over 92 million tonnes of textile waste are generated annually, while less than 10 % of this volume is recycled, with the remainder mostly landfilled or incinerated [1–2]. Such disposal practices create significant environmental burdens, including long-term soil contamination, microplastic emissions and increased greenhouse gas emissions. Incineration alone contributes significantly to CO₂ and air pollutant emissions, while landfilling synthetic fibres, which can take decades to decompose, results in the continuous leaching of dyes and chemical finishes into surrounding ecosystems [2, 3]. The heterogeneous nature of textile waste poses a challenge for recycling. Waste streams typically contain natural fibers (cotton, wool), synthetic polymers (polyester, nylon, acrylic), elastane blends, multilayer laminates, and chemically treated materials. This makes sorting, cleaning, and recycling difficult, especially for high-performance applications.

Several emerging recycling technologies show significant potential to improve material recovery and environmental performance. Mechanical recycling remains the most widely used method due to its simplicity and relatively low environmental footprint, although it is limited by fiber degradation and the challenges associated with sorting mixed materials [4]. Chemical recycling, including glycolysis, solvolysis, and alkaline hydrolysis, is gaining increasing importance due to its ability to produce high-purity monomers and regenerate polymers suitable for closed-loop textile systems. New catalysts such as ZnO, Zn-MCM-41, silver-doped ZnO and other nanocomposites provide degradation efficiencies of over 90 % while promoting dye decolorization [5]. In addition, environmentally friendly solvents including ionic liquids (ILs) and deep eutectic solvents (DESs) have emerged as promising media capable of separating polyester-cotton blends with recovery rates of up to 99 % [6, 7]. Another method, biological recycling, including enzymatic hydrolysis and vermicomposting, provides low-impact alternatives to natural fibers [8]. Thermal recycling by pyrolysis or gasification offers options for material and energy recovery. A factor that facilitates all recycling routes is the accurate identification and sorting of textile waste. Rapid advances in near-infrared spectroscopy (NIR), hyperspectral imaging, and deep learning classification models have achieved sorting accuracies exceeding 95 %, significantly improving the efficiency of downstream processing processes [9]. Innovation for blended textiles focuses on recycling into special-purpose materials such as engineered cellulose, advanced composites, carbon adsorbents, and smart functional textiles.

2. Results and Discussion

A review of recent studies shows significant progress in textile waste recycling technologies, demonstrating that the most effective strategies combine advanced sorting systems with optimized

mechanical, chemical, biological and thermal treatment methods to achieve high material recovery rates, reduce emissions and expand the production of specialty materials. The algorithm is shown in Figure 1.

Fig. 1 Recycling Routes for Textile Waste – A Process Flowchart

A review of the scientific literature shows that mechanical recycling continues to dominate industrial practice, especially for pure cotton and polyester waste streams. Studies confirm that shredding, fluffing and fiber extraction provide relatively high scalability, favorable energy consumption and high recovery yields, while maintaining a relatively low environmental impact [4]. Despite these advantages, mechanical processing is limited by the reduction in fiber length and mechanical properties, which limits its use in high-performance applications, as well as the difficulty of processing blended materials containing elastane or complex finishes, which require complex sorting systems to prevent contamination [10]. However, mechanically processed fibers perform well in nonwovens, polymer composites. The incorporation of recycled cotton or synthetic fibers into polypropylene, polyethylene, and epoxy matrices improves tensile strength, flexural modulus, and impact resistance, indicating the suitability of mechanical processing for medium-performance composite materials. These recycled fibers are increasingly used in the production of special-purpose materials such as impact-resistant panels, automotive and aerospace composites, and reinforced layers for protective clothing.

Chemical processing has emerged as one of the most promising methods for recovering high-purity polymers and monomers. Glycolysis, hydrolysis and solvolysis processes, especially catalyzed by ferrite nanoparticles, Zn-MCM-41 nanocomposites and Ag-ZnO, achieve monomer recovery efficiencies of over 90 % and simultaneously increase the dye removal efficiency in highly colored polyester waste [5]. Green solvent systems, such as ionic liquids and deep eutectic solvents (DESs), further support the selective dissolution of cellulose and polyester fractions, allowing for almost complete recovery of cotton-polyester blends with efficiencies reaching 99 % [6,7]. Hybrid DES-NaOH systems are particularly promising for the degradation of PET while preserving the integrity of the cellulose for further use [7]. Recovered polymers and regenerated cellulose are applied in high-performance technical textiles, filtration membranes, smart coatings with antimicrobial properties, and advanced composites for defense and aerospace sectors.

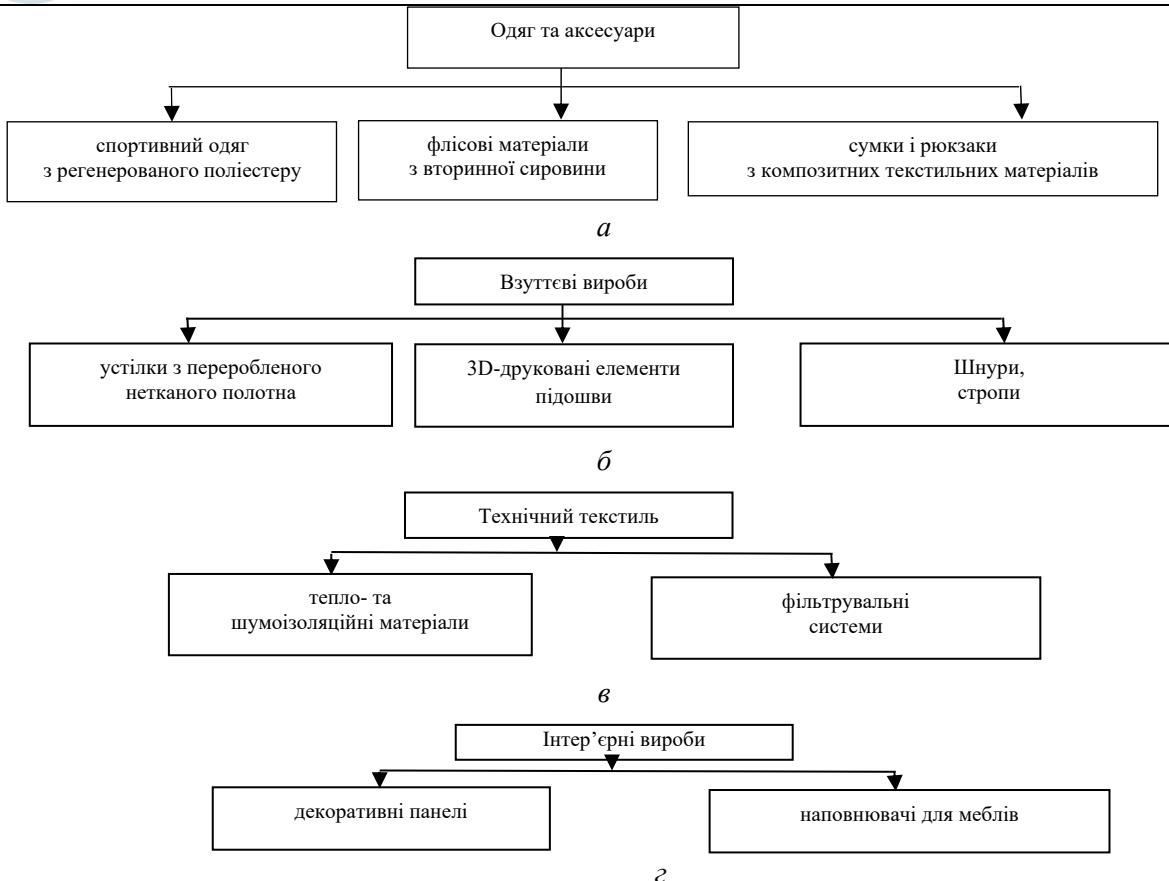
Biological and thermal methods offer additional, but more specialized, avenues for improving textile quality. Enzymatic hydrolysis and vermicomposting are low-throughput approaches for cotton and other natural fibers, converting cellulose into glucose-based intermediates or biopolymers suitable for the production of biomaterials [8]. Biological recycling is limited by

slow reaction rates, harsh conditions, and its inability to process synthetic fibers, though it yields biopolymers and glucose derivatives for medical biomaterials, biodegradable packaging, and water purification adsorbents.

Thermal methods such as pyrolysis and gasification can treat mixed wastes to produce oils, syngas, or carbon materials, but pyrolysis requires high energy and emits more greenhouse gases than mechanical recycling, while still being less impactful than incineration [11]. Carbon-rich pyrolysis residues are used in specialized applications such as adsorbents for gas purification, heat-shielding coatings. In all recycling technologies, sorting accuracy remains the most important operational bottleneck. Recent advances in NIR, hyperspectral imaging, and deep neural network classifiers have increased sorting accuracy to over 95 % [9]. Persistent problems are associated with the detection of minor components such as elastane or polymer coatings, which, although representing a small mass fraction, significantly affect recyclability. Integrated automated sorting conveyors using robotics, AI-based spectral analytics, and real-time classification are becoming important components to increase throughput and minimize contamination risks [12]. Effective textile waste recycling relies on combining mechanical, chemical, biological, and thermal methods with advanced sorting and supportive policies to enable large-scale production of high-value composites, functional textiles, and engineered materials for critical industries.

References

- [1] Zandberga A, Kalnins SN, Gusca J. Decision-making algorithm for waste recovery options: Review on textile waste-derived products. *Environmental and Climate Technologies*. 2023.
- [2] Al-Sayed W, Abdelrahman SH. Sustainable chemistry in textile processes (pretreatment, coloration and chemical finishing). In: *Green Chemistry for Sustainable Textiles: Modern Design and Approaches*. 2021.
- [3] Abbas-Abadi MS, Tomme B, Goshayeshi B, Van Geem KM. Advancing textile waste recycling: Challenges and opportunities across polymer and non-polymer fiber types. *Polymers*. 2025.
- [4] Yao P, Shan F, Li D, Qian G. Balancing textile waste recovery technologies from the environmental, economic, and technological perspectives. *Sustainable Production and Consumption*. 2025.
- [5] Li Y, Shen J, Liu Q, Ge M. Zinc-doped ferrite nanoparticles as bi-functional catalysts for decolorization of disperse dyes in glycolysis of colored poly(ethylene terephthalate) fabrics. *Journal of Environmental Chemical Engineering*. 2023.
- [6] Wu H, Long Y, Wang B, Nie Y. Design and synthesis of novel ionic liquids for the dissolution and separation of waste poly-cotton fabrics. *Biomass and Bioenergy*. 2024.
- [7] Zhang L, Wang T, Wang Y, Wang Z. Efficient separation of polyester/cotton blends using a deep eutectic solvent–NaOH hybrid system for textile recycling. *Green Chemistry*. 2025.
- [8] Shanmugam V, Subbaiyan B, Shakshi P, Balasubramanian R. Vermicomposting: A potential technology facilitating sustainable textile waste management. *Journal of Material Cycles and Waste Management*. 2025.
- [9] Faghih E, Saki Z, Moore M. A systematic literature review—AI-enabled textile waste sorting. *Sustainability*. 2025.
- [10] Stipanovic H, Koinig G, Fink T, Tischberger-Aldrian A. Quantifying cotton content in post-consumer polyester/cotton blend textiles via NIR spectroscopy: Current attainable outcomes and challenges in practice. *Recycling*. 2025.
- [11] Morell-Delgado G, Talens Peiró L, Toboso-Chavero S. Revealing the management of municipal textile waste and citizen practices: The case of Catalonia. *Science of the Total Environment*. 2024.
- [12] Spyridis Y, Argyriou V, Sarigiannidis A, Sarigiannidis P. Autonomous AI-enabled industrial sorting pipeline for advanced textile recycling. In: *Proceedings of the 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT 2024)*. 2024.


ТЕХНОЛОГІЙ ПОВТОРНОГО ВИКОРИСТАННЯ ТЕКСТИЛЬНИХ ВІДХОДІВ ДЛЯ СТВОРЕННЯ НОВИХ ВИРОБІВ ЛЕГКОЇ ПРОМИСЛОВОСТІ

Людмила Назарчук, Юлія Лемкович, Олександр Шовкомуд
Луцький національний технічний університет

Текстильна промисловість є однією з найбільш ресурсомістких галузей, що генерує значні обсяги відходів на всіх етапах життєвого циклу продукції – від виробництва тканин до кінцевого споживання. За даними міжнародних екологічних досліджень, щороку у світі утворюється понад 92 млн т текстильних відходів, більша частина яких потрапляє на полігони або спалюється. Це спричиняє втрату цінних ресурсів, зростання навантаження на довкілля та необхідність пошуку нових підходів до переробки. Тому особливої актуальності набувають технології повторного використання текстильних відходів для створення нових матеріалів і виробів легкої промисловості. Їх розвиток відповідає принципам циркулярної економіки, сприяє зменшенню екологічного сліду та відкриває нові можливості для інновацій у модній індустрії.

Метою роботи є аналіз сучасних технологій рециклінгу текстильних відходів та оцінка їх перспектив для створення конкурентоспроможних виробів легкої промисловості.

Текстильні відходи умовно поділяються на три групи: 1) обрізки тканини, обрізки ниток, некондиційні рулони; 2) уживаний одяг і текстиль; 3) відходи технічного текстилю – спецодяг, геотекстиль, фільтрувальні матеріали. Дослідження свідчать, що до 70 % цих відходів можуть бути повторно використані після сортування та обробки. Сучасні технології повторної переробки текстилю включають механічний рециклінг, хімічний рециклінг, термопластичне переплавлення, 3D-технології як інструмент повторного використання текстильних відходів. При розпушуванні через механічне подрібнення текстильних матеріалів відбувається механічний рециклінг. В результаті отримується волокниста маса для нетканих матеріалів, утеплювачів, акустичних та теплоізоляційних панелей. Перевагами такої переробки є її низька вартість та екологічність. До недоліків можна віднести скорочення довжини волокон та зниження міцності. Під час хімічного рециклінгу проходить застосування розчинників або хімічних реакцій для відділення полімерів (ПЕТ, поліамід, целюлоза), що дає можливість отримати майже первинної якості волокна і грануляту [4]. Прикладами технологій може бути технологія для поліестеру, аміноліз і гліколіз, розчинення целюлозних волокон у спеціальних реагентах. До переваг можна віднести отримання сировини високоякісної [1]. Недоліками є складність в обслуговуванні дороговартісного обладнання і потреба у безпечних реагентах. Термопластичне переплавлення може використовуватися під час повторної переробки текстилю, це переробка синтетичних матеріалів (ПЕТ, нейлон) у гранулят, який використовують у подальшому на виробництві при створенні ниток, плівок, 3D-друкованих матеріалів (filament) [2]. Інструментом повторного використання текстильних відходів є 3D-технології. Нові підходи об'єднують рециклінг та цифрове виробництво: 3D-друк з текстильних композитів, створених на основі подрібненого текстилю й полімерних зв'язувальних; виробництво 3D-нитівкових структур, що можуть застосовуватись у взутті, аксесуарах, декоративних елементах; 3D-сканування та 3D-моделювання, яке дозволяє оптимізувати виробництво та скорочувати кількість відходів шляхом створення точних лекал [5]. Ці технології відкривають шлях до появи нових матеріалів та виробів, що поєднують рецикловану сировину і цифрові інновації. Напрямами застосування перероблених матеріалів у легкій промисловості може бути одяг та аксесуари (рис. 1, а), взуттєві вироби (рис. 1 б), технічний текстиль (рис. 1 в), інтер'єрні вироби (рис. 1, г). Перевагами повторного використання текстильних відходів є зменшення екологічного навантаження; заощадження ресурсів і енергії; створення нової ринкової ніші для українських підприємств; можливість виробництва інноваційних матеріалів; розвиток циркулярних бізнес-моделей [3]. Виклики і обмеження: складність первинного сортування відходів; відсутність стандартизованих систем збору текстилю; різноманітність складу тканин і необхідність їх розділення; високі витрати на запуск сучасних технологій; низька обізнаність споживачів про переваги рециклованих матеріалів.

Рис. 1 Напрями застосування перероблених матеріалів у легкій промисловості:
а) одяг та аксесуари, б) взуттєві вироби, в) технічний текстиль, г) інтер'єрні вироби

Висновки

Технології повторного використання текстильних відходів відкривають значний потенціал для легкої промисловості та є важливим кроком у впровадженні принципів сталого розвитку. Інтеграція механічного, хімічного та цифрового рециклінгу, включаючи 3D-технології, дозволяє створювати інноваційні матеріали та вироби з високою доданою вартістю. Активний розвиток цих технологій в Україні може сприяти формуванню конкурентоспроможної екологічної індустрії, здатної працювати за стандартами ЄС і світовими тенденціями циркулярної економіки.

Список використаних джерел

1. Теоретичні засади та практична реалізація комплексної переробки полімермістких відходів у вироби легкої промисловості : монографія / О. М. Синюк, Т. В. Іванішена, С. Г. Кулешова, Т. А. Надопта, С. Л. Горященко. – Хмельницький : ХНУ, 2023. – 222 с.
2. Suen D. W., et al. Sustainable Textile Raw Materials: Review on Bioprocessing of Textile Waste via Electrospinning // Sustainability. – 2023. – No 15. – DOI: 10.3390/su151511638.
3. Іванішена, Т., Мандзюк, І., Трухіна, О., Пекарська, В. (2023). Оцінка життєвого циклу матеріалів як інструмент удосконалення процесів легкої промисловості та впровадження принципів кругової економіки виробництв. Herald of Khmelnytskyi National University. Technical Sciences, 325 (5 (1), 89–97. URL: <https://doi.org/10.31891/2307-5732-2023-325-5-89-97>
4. Іщук, Т., Іванішена, Т., (2025). Напрямки використання вторинної сировини у легкій промисловості. Herald of Khmelnytskyi National University. Technical Sciences, 349 (2), 166–170. URL: <https://doi.org/10.31891/2307-5732-2025-349-24>

5. Рябчиков, М., & Назарчук, Л. В. (2023). Дослідження плечової зони поверхні тіла людини для цілей проектування одягу з використанням 3d- сканування. Товарознавчий вісник, 1 (16), 298–309 / URL: <https://doi.org/10.36910/6775-2310-5283-2023-17-25>

СЕКЦІЯ 4 / SECTION 4

Діджитал-технології для оптимізації, моніторингу та управління виробничими процесами

Digital technologies for monitoring, optimization,
and management of industrial processes

ONBOARD COMPUTING ARCHITECTURES FOR QUADCOPTERS: A REVIEW AND A MODULAR JETSON-BASED SYSTEM FOR DUAL-USE AUTONOMY

Mateusz Ambrožkiewicz¹*, Bartłomiej Bonar¹, Tomasz Buratowski¹, Mariusz Giergiel¹

¹*Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics
AGH University of Krakow, 30-059 Kraków, Poland*

*Correspondence: mambroz@agh.edu.pl

This paper reviews onboard computing architectures for quadcopters in dual-use applications, examining state-of-the-art flight computers, expansion modules, and sensors. The work introduces a modular system based on NVIDIA Jetson and a ROS 2–Rust software stack to support reliable, high-performance autonomy for civil and defense applications.

Keywords: *drone, embedded system, ROS 2, Jetson, Rust.*

1. Introduction

Small multirotor drones have evolved from hobbyist systems into widely used platforms in civilian and defense applications. Advances in miniaturized electronics and accessible sensors such as GPS and high-resolution cameras have significantly increased their autonomy and functional scope. Central to these systems is the autopilot: an embedded computer executing flight-control software that stabilizes the vehicle, manages navigation and telemetry, and ensures operational safety. Early quadcopters relied on simple microcontrollers performing basic attitude control, but growing demands in inspection, agriculture, and surveillance required more sophisticated onboard computing.

Modern quadcopters typically employ a two-layer computing architecture combining a real-time flight controller with a high-level companion computer. The flight controller—often a Pixhawk-class microcontroller running PX4 or ArduPilot—executes high-frequency sensor fusion and motor control loops to maintain stable flight. It provides state estimates such as position, velocity, attitude, and timing. The companion computer, usually a Linux-based single-board platform, handles computationally intensive tasks including perception, mapping, tracking, and path planning. This separation ensures deterministic flight stabilization while enabling advanced autonomy.

Open-source autopilots such as PX4 and ArduPilot form the foundation of modern small UAVs. Their maturity, configurability, and broad hardware support have led to widespread adoption in research, commercial, and military systems. A critical capability is their integration with companion computers via MAVLink, enabling exchange of telemetry, mission commands, and high-level navigation inputs. Many implementations demonstrate this division of labor: for instance, PX4 integrated with Nvidia Jetson modules for onboard depth processing, or ArduPilot paired with Raspberry Pi for real-time vision. Middleware such as ROS, connected to the autopilot through MAVROS or MAVSDK, further facilitates modular development of autonomy pipelines.

Embedded computing platforms have progressed dramatically. The Nvidia Jetson series provides GPU-accelerated processing suitable for real-time neural inference and high-resolution computer vision. Modules such as TX2, Xavier NX, and Orin allow drones to execute complex perception and decision-making algorithms onboard. Lighter platforms such as Raspberry Pi remain useful for moderate-complexity autonomy tasks and mission-level logic, though with reduced AI acceleration capabilities. Meanwhile, integrated drone-focused systems like Snapdragon Flight or VOXL illustrate the trend toward unified, open, and extensible computing architectures optimized for UAV applications.

Meeting the computational requirements of autonomous drones also depends on robust software organization. UAVs often perform SLAM, obstacle avoidance, object classification, and

planning concurrently, placing high demands on timing coordination. Flight-critical loops must operate deterministically at rates over 100 Hz, making isolation of autonomy processes essential. Reliable communication patterns, predictable data flow, and decoupling of real-time and non-real-time tasks are fundamental to safe operation. Edge-level processing enables low-latency perception-driven decision-making, but only if supported by disciplined architectural separation.

The dual-use nature of UAV technology reinforces the importance of secure and extensible onboard architectures. Civilian drones used for inspection or logistics can be repurposed for military reconnaissance or targeting with minimal modifications, facilitated by open-source autopilots and inexpensive computing hardware. This convergence heightens requirements for cybersecurity, resilience, robust communications, and verification of software behavior. Civilian operators prioritize reliability and compliance, while defense users additionally demand robustness against jamming, cyber threats, and contested-environment operation. In both contexts, modularity and upgradability are essential for integrating new sensors, communication links, and AI models without redesigning the platform.

2. Results and discussion

In response, the UAV community increasingly adopts modular open-systems architectures. Modularity enables independent replacement and upgrading of components, while openness leverages established standards and open-source frameworks to support interoperability. The Robot Operating System (ROS), and especially ROS 2, has emerged as a central middleware for companion computing. ROS provides a publish–subscribe communication model that separates perception, planning, and control into reusable and independently deployable modules. ROS 2 further introduces DDS-based communication, configurable quality-of-service profiles, enhanced reliability, and improved security, making it suitable for real-time-aware UAV autonomy and multi-vehicle coordination.

In parallel, UAV developers increasingly explore memory-safe systems programming languages such as Rust to enhance software reliability. While C/C++ remain standard due to performance and hardware accessibility, they are prone to memory-safety issues that are unacceptable in flight-critical systems. Rust's ownership and type-safety guarantees eliminate classes of runtime errors, supporting safe concurrency and predictable behavior with near-C performance. Early applications in UAV systems indicate strong potential for improving robustness in both low-level and high-level autonomy components.

Within this context, our review examines the evolution of onboard computing architectures for quadcopters and synthesizes the state of the art in designing systems that support advanced autonomy under strict real-time and reliability constraints. We also introduce a modular Jetson-based onboard computing architecture for dual-use UAV autonomy, integrating a Jetson platform running Linux with ROS 2 middleware and Rust-based safety-critical modules. This approach combines high-performance onboard perception and AI, a modular publish–subscribe software framework, and a memory-safe programming model. By aligning open-source ecosystems with modern software-assurance practices, the proposed architecture supports both innovation-driven civilian applications and the robustness expectations of defense environments. The following sections review current UAV computing solutions and detail our Jetson/Linux/ROS2/Rust system as a pathway toward next-generation autonomous quadcopter platforms.

DIAGNOSTIC IOT TECHNOLOGIES FOR REAL-TIME MONITORING OF INDUSTRIAL MATERIALS UNDER OPERATIONAL LOADS

Taisiia Serdenko^{1*}

¹Mukachevo State University, Mukachevo, Ukraine

*Corresponding author: komarevska.tais@gmail.com, Mukachevo, 89600, Ukraine

This paper explores the use of IoT-based diagnostic technologies for continuous real-time monitoring of industrial materials under operational loads. It highlights sensor networks, wireless communication layers, and intelligent data analytics used to detect deformation, vibration

anomalies, corrosion processes, and thermal degradation. Integrating machine learning with IoT systems enables early fault detection, accurate prediction of material lifetime, and supports predictive maintenance to enhance safety, efficiency, and sustainability in industrial environments.

Keywords: IoT, material diagnostics, structural monitoring, predictive maintenance, sensor networks.

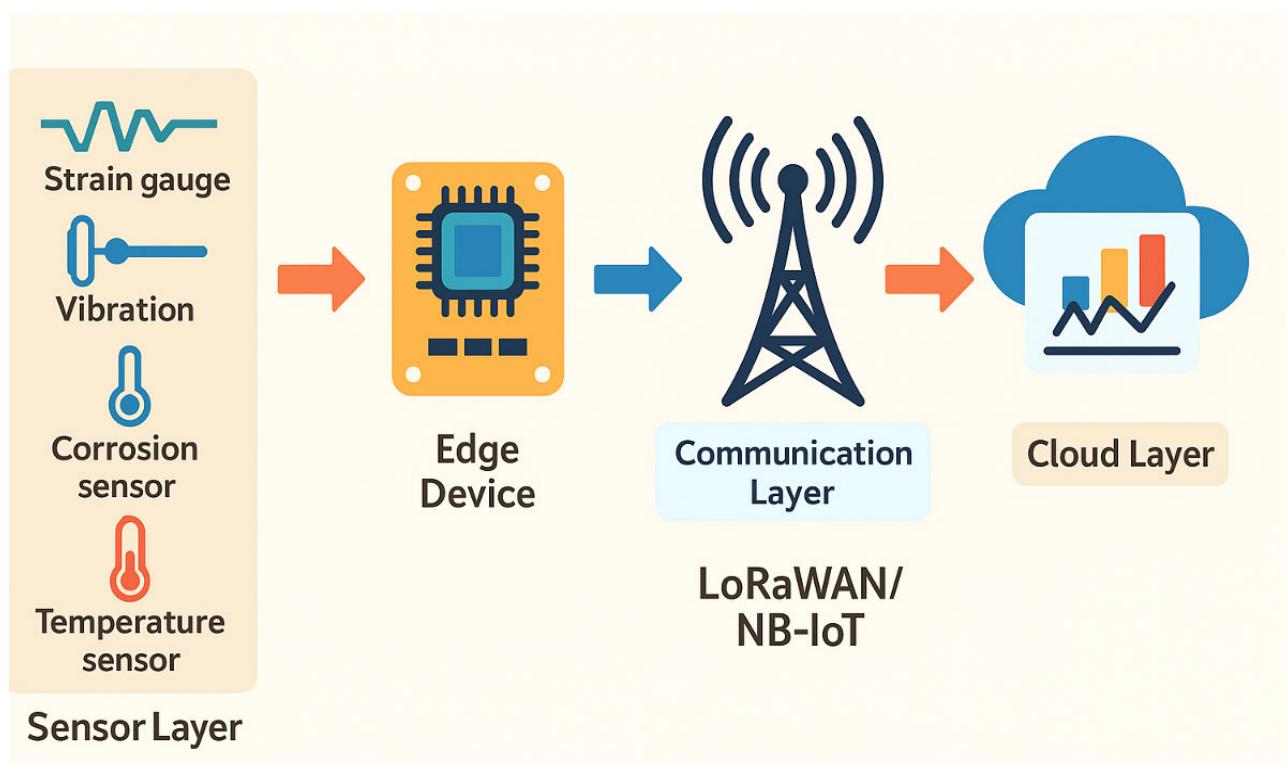
1. Introduction

The rapid development of modern industry and the increasing complexity of technological infrastructures require highly reliable, continuous and intelligent monitoring of materials that operate under diverse mechanical, thermal and environmental loads. Industrial objects such as bridges, pipelines, support structures, high-temperature units, transport components and composite assemblies undergo long-term fatigue, corrosive influences, temperature cycling and vibration stresses. Traditional diagnostic approaches, including periodic visual inspections, laboratory testing or destructive analysis, do not provide uninterrupted observation of structural changes and are incapable of detecting degradation at its earliest manifestations. As emphasized in modern studies on non-destructive testing [1], this limitation significantly elevates operational risks, contributes to material failures and leads to unplanned maintenance interventions that dramatically increase industrial costs.

In this context, Internet-of-Things technologies have become one of the most effective modern tools for real-time monitoring of industrial materials, enabling continuous data acquisition and intelligent interpretation of structural behavior under real operational conditions [2]. An IoT-based diagnostic system integrates distributed low-power sensors, edge computing modules, wireless communication technologies and cloud-based analytical platforms. Such systems measure deformation, mechanical stress, vibration response, corrosion indicators, temperature variations, humidity levels and other parameters that directly reflect the physical state and degradation dynamics of metals, composites, concrete and hybrid materials.

Modern sensor solutions – including strain gauges, fiber-optic Bragg grating elements, acoustic emission detectors, MEMS accelerometers and electrochemical corrosion sensors – ensure high sensitivity, long-term stability and reliable operation in harsh industrial environments [3]. Their compactness and energy efficiency make it possible to integrate monitoring nodes directly into critical infrastructure components for months or even years without replacement.

Wireless communication technologies such as NB-IoT, LTE-M, LoRaWAN, ZigBee and Wi-Fi form the backbone of large-scale diagnostic networks. LoRaWAN is widely used for low-energy, long-distance communication, while NB-IoT and LTE-M provide highly reliable cellular connectivity in remote or difficult-to-access industrial areas. Edge microcontrollers preprocess data streams, apply noise filtering and detect early anomalies before transmitting information to cloud platforms. This reduces bandwidth requirements and energy consumption, enabling long-term autonomous system operation. Energy harvesting technologies further extend the operational lifetime of monitoring devices by converting vibrations, thermal gradients or ambient light into power.


Overall, the introduction of IoT-based diagnostics represents a paradigm shift in material monitoring. It transforms the traditionally reactive approach into a proactive and predictive system capable of revealing subtle structural changes long before they become critical.

2. Results and discussion

The collected data from distributed IoT nodes undergo multistage processing that integrates classical signal-analysis techniques with advanced machine-learning methods. A block diagram of the diagnostic workflow is presented in Figure 1 to illustrate the sequence of stages from raw data acquisition to anomaly detection and decision-making. Time-series anomaly detection, spectral and wavelet decomposition, clustering algorithms and deep-learning regression models enhance the accuracy of material condition assessment and enable the forecasting of degradation patterns [4]. Such analytical pipelines allow the identification of microscale deviations from normal operational behavior that would remain unnoticed using traditional diagnostic tools.

Vibration-based diagnostic methods are particularly significant for monitoring stiffness loss, crack propagation and variations in dynamic response under real operational conditions. As demonstrated in multiple studies [5], the analysis of vibration signatures provides insight into early structural deterioration even when visual inspection shows no abnormalities. When combined with IoT-based distributed sensing, vibration analytics becomes a powerful instrument for detecting mechanical fatigue and structural weaknesses with high temporal resolution.

Practical applications of IoT diagnostics reveal their effectiveness across different industrial domains. In bridge monitoring, wireless fiber-optic sensors measure deformation and detect corrosion-induced weakening, allowing infrastructure operators to plan maintenance well in advance and avoid sudden failures. In concrete and composite structures, embedded sensor networks continuously track the growth of cracks, moisture penetration and changes in material stiffness, providing valuable information for civil engineering and construction management. Thermal IoT monitoring systems implemented in heat-exchange equipment and high-temperature installations identify fouling, insulation degradation, overheating events and other anomalies that directly influence material fatigue and energy efficiency.

Fig. 1 Block diagram of the diagnostic workflow in an IoT-based material monitoring system

In transport engineering, vibration and acoustic IoT sensors integrated into railway systems, aircraft components or heavy machinery enable early detection of wear, misalignment and structural fatigue in both metallic and composite parts. This reduces downtime, enhances operational safety and increases the lifespan of critical components. The combination of real-time sensing, automated anomaly detection and cloud-based analytics creates a continuous feedback loop that supports predictive maintenance and optimizes resource allocation.

The integration of IoT diagnostics significantly contributes to digital industrial transformation. By enabling uninterrupted monitoring, rapid response to structural changes and precise forecasting of material degradation, IoT systems improve the safety, sustainability and economic efficiency of industrial operations. They extend infrastructure lifespan, reduce waste,

minimize environmental risks and serve as foundational elements of modern industrial management practices. As a result, IoT-based monitoring has become a key tool for ensuring safe, efficient and resilient operation of industrial materials under real operational conditions.

References

- [1] García-Martín, R., Escudero, M., Shafiq, B. Non-destructive testing of materials: Recent advances and future directions. *Sensors*, 20(3): 593, 2020.
- [2] Jawhar, I., Turgut, D., Mohamed, N. IoT-based monitoring of structural integrity using wireless sensor networks. *Journal of Sensor and Actuator Networks*, 6 (3): 29, 2017.
- [3] Nguyen, T. T., et al. Fiber-optic sensing technologies for structural health monitoring: A review. *Sensors*, 22(6): 2368, 2022. <https://doi.org/10.3390/s22062368>
- [4] Sun, L., Buyukozturk, O. Structural damage detection using machine learning methods. *Engineering Structures*, 219: 110927, 2020.
- [5] Xia, Y., Hao, H., Dong, S. Damage monitoring of materials and structures under operational conditions using vibration-based methods. *Mechanical Systems and Signal Processing*, 102:291–307, 2018.

ВИКОРИСТАННЯ AR/VR ДЛЯ ГОТЕЛЬНО-РЕСТОРАННОГО БІЗНЕСУ

Валерія Корсун

Державний торговельно-економічний університет, ДТЕУ

The article examines the role of AR/VR technologies in transforming the hospitality industry. It highlights VR tours, AR navigation, interactive menus, staff training simulations, and innovative marketing. The study outlines key benefits for customer experience and operational efficiency, as well as challenges of implementation.

Keywords: AR technologies; VR technologies; hospitality industry; customer experience; digital innovation.

У сучасному світі, що динамічно розвивається під впливом технологічних інновацій, готельно-ресторанний бізнес постійно шукає нові шляхи для залучення клієнтів, оптимізації операційної діяльності та створення незабутнього досвіду. Серед найбільш перспективних інструментів, що здатні революціонізувати галузь, виділяються технології доповненої (AR) та віртуальної (VR) реальності. Ці інноваційні рішення відкривають безпрецедентні можливості для трансформації взаємодії зі споживачами, підвищуючи ефективності навчання персоналу та формування унікального іміджу бренду.

Віртуальна реальність, занурюючи користувача у повністю змодельоване цифрове середовище, пропонує гостям готелів та відвідувачам ресторанів абсолютно новий рівень взаємодії з послугами ще до їхнього фактичного отримання. Насамперед, це стосується віртуальних турів. Потенційні гості можуть здійснити детальну подорож готельними номерами, люксами, конференц-залами, спа-центрами, басейнами та іншими локаціями, отримуючи повне уявлення про простір та його атмосферу. Такий іммерсивний досвід дозволяє не лише візуалізувати майбутнє перебування, але й формувати емоційний зв'язок з брендом, значно підвищуючи ймовірність бронювання. Туроператори та організатори заходів, у свою чергу, можуть оглядати місця проведення подій дистанційно, обираючи оптимальні локації без необхідності фізичних візитів, що економить час та ресурси. У ресторанах VR може запропонувати віртуальні дегустації, демонстрації приготування страв від шеф-кухаря або навіть повне занурення у тематичні обідні зони, переносячи відвідувачів, наприклад, на

узбережжя Середземномор'я або до середньовічного замку, тим самим створюючи унікальний концептуальний досвід. [2]

Доповнена реальність, на відміну від віртуальної, накладає цифрові елементи на реальне фізичне середовище, збагачуючи його новими шарами інформації та інтерактивності. Для готельного бізнесу AR може стати незамінним помічником у навігації: від пошуку номера або конференц-залу за допомогою смартфона до віртуального консьєржа, що надає інформацію про місцеві пам'ятки, ресторани чи транспортні маршрути безпосередньо в полі зору гостя. AR-додатки можуть дозволяти гостям віртуально «приміряти» різні конфігурації меблів у свою номер, замовляти послуги або контролювати освітлення та клімат за допомогою інтерактивних елементів, накладених на реальні об'єкти. У ресторанах AR-меню вже є яскравим прикладом такої інтеграції. Відвідувачі можуть навести свій смартфон або планшет на пункт меню і побачити тривимірну візуалізацію страви, її склад, калорійність, алергени та навіть історію походження інгредієнтів. Це не тільки спрощує процес вибору, роблячи його більш прозорим та захоплюючим, але й дозволяє ресторанам демонструвати свою кулінарну майстерність у найбільш привабливому світлі. AR також може використовуватися для гейміфікації досвіду, пропонуючи інтерактивні ігри або квести під час очікування замовлення, що особливо актуально для сімейних закладів [2].

Окрім прямої взаємодії з клієнтами, AR/VR технології пропонують значні переваги для внутрішніх операційних процесів та навчання персоналу. Віртуальна реальність дозволяє створювати реалістичні симуляції робочих сценаріїв, від навчання нових співробітників готельним стандартам обслуговування, процедурам реєстрації та врегулювання конфліктів до відпрацювання дій у надзвичайних ситуаціях, таких як пожежна евакуація або медичні інциденти. Персонал може практикувати свої навички у безпечному, контролюваному середовищі, відточуючи майстерність без ризику помилок у реальних умовах.

У ресторанному бізнесі VR-тренінги можуть імітувати роботу на кухні, правила гігієни, основи сомельє або бариста, покращуючи якість підготовки та стандартизацію обслуговування. Доповнена реальність може бути використана для технічного обслуговування обладнання, коли інженери можуть отримувати покрокові інструкції з ремонту, накладені на реальні компоненти, що значно прискорює та спрощує процес [4].

Впровадження AR/VR також є потужним інструментом маркетингу та брендингу. Завдяки цим технологіям готелі та ресторани можуть виділитися на ринку, пропонуючи унікальний досвід, який створює високу цінність для споживача. Віртуальні рекламні кампанії, що дозволяють потенційним клієнтам «відвідати» заклад або «спробувати» страву з будь-якої точки світу, значно підвищують зацікавленість та конверсію. Створення інноваційного іміджу як технологічно просунутого бізнесу приваблює молоду, технічно обізнану аудиторію та зміцнює лояльність існуючих клієнтів. Це не просто послуга, а ціла історія, в яку занурюється клієнт, стаючи її частиною [4].

Проте, незважаючи на величезний потенціал, впровадження AR/VR в готельно-ресторанному бізнесі супроводжується певними викликами. Висока початкова вартість розробки програмного забезпечення, придбання обладнання (VR-гарнітури, потужні комп'ютери, спеціальні камери) та створення якісного, інтерактивного контенту є значним бар'єром для багатьох компаній. Крім того, важливо забезпечити зручність та інтуїтивність використання цих технологій для всіх вікових груп та категорій клієнтів, адже не всі користувачі однаково готові до взаємодії з віртуальною чи доповненою реальністю. Також існує потреба у кваліфікованих фахівцях, які зможуть не лише розробити, але й підтримувати та оновлювати AR/VR-рішення. Інтеграція нових систем з існуючою ІТ-інфраструктурою готелів та ресторанів також може бути складним завданням. Зрештою, необхідно постійно працювати над тим, щоб AR/VR не замінювали, а доповнювали людське спілкування та індивідуальний підхід, які залишаються ключовими складовими якісного обслуговування в цій галузі.

Підсумовуючи, використання технологій доповненої та віртуальної реальності в готельно-ресторанному бізнесі є не просто трендом, а стратегічним напрямком розвитку, що здатен перетворити традиційні моделі надання послуг. Вони пропонують безпредecedентні можливості для покращення клієнтського досвіду, оптимізації операційної ефективності, підвищення якості навчання персоналу та посилення конкурентних переваг на ринку.Хоча існують певні виклики, пов'язані з інвестиціями та адаптацією, довгострокові вигоди від впровадження AR/VR є беззаперечними. Готелі та ресторани, що першими інтегрують ці інновації, зможуть не тільки залучити нову аудиторію та підвищити лояльність клієнтів, але й встановити нові стандарти якості та інноваційності в усій галузі, пропонуючи гостям та відвідувачам по-справжньому незабутні та захоплюючі враження, які виходять за рамки звичайного обслуговування. Це шлях до створення майбутнього, де реальність зустрічається з цифровим світом, надаючи кожному унікальну та персоналізовану подорож.

Список використаних джерел

- [1] Bardi J. What is Virtual Reality: Definitions, Devices, and Examples. 3D Cloud Marxent, 03.26.2019. Available at: <https://www.marxentlabs.com/what-is-virtual-reality/> (accessed 24.11.2022).
- [2] VR i AR v turizme i restorannom biznese segodnya [VR and AR in tourism and restaurant business today]. Virtual Land. Available at: <https://virtualland.ru/blog/vr-i-ar-v-turizme-i-restorannom-biznese-segodnya> (accessed 20.12.2022)
- [3] Magomedov R. M. On the Use of Virtual and Augmented Reality in Business // Business. Education. Law. 2024. No. 1(66). Pp. 87—91. DOI: 10.25683/VOLBI.2024.66.904.
- [4] Kim, M.J., Lee, C.-K., Jung, T., 2020. Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-response model. J. Travel Res. 59 (1), 69–89. <https://doi.org/10.1177/0047287518818915>.
- [5] Lee, M., Lee, S. A., Jeong, M., Oh, H., 2020. Quality of virtual reality and its impacts on behavioral intention. Int. J. Hosp. Manag. 90, 10259 <https://doi.org/10.1016/j.ijhm.2020.102595>.

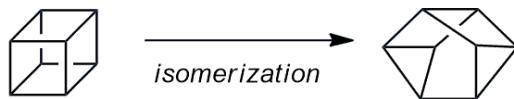
КВАНТОВО-ХІМІЧНЕ ДОСЛІДЖЕННЯ МЕХАНІЗМУ ТА РЕГІОСЕЛЕКТИВНОСТІ Ag(I)-КАТАЛІЗОВАНОГО ПЕРЕГРУПУВАННЯ ПОХІДНИХ КУБАНУ В КУНЕАН

Марюк К.А.^{1,2}, Гайдай О. В.^{1,2}, Григор'єв Н. Е.²

¹Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр-т Берестейський, 37, 03056, Київ

²ТОВ «НВП «Єнамін», вул. Вінстона Черчилля 78, 02094, Київ

*Автор-кореспондент: mariuk.kateryna@ll.kpi.ua Київ, 03150, Україна


The study investigates the quantum-chemical mechanism and regioselectivity of Ag(I)-catalyzed rearrangement of cubane derivatives into cuneane. It emphasizes the role of substituents in stabilizing transition states, challenges in modeling Ag(I) systems, and limitations of standard DFT methods. Insights aim to improve synthetic strategies for 3D bioisosteres in drug design.

Keywords: cubane, cuneane, Ag(I) catalysis, regioselectivity, quantum chemistry, DFT, bioisosterism, transition metal catalysis, computational chemistry, drug design.

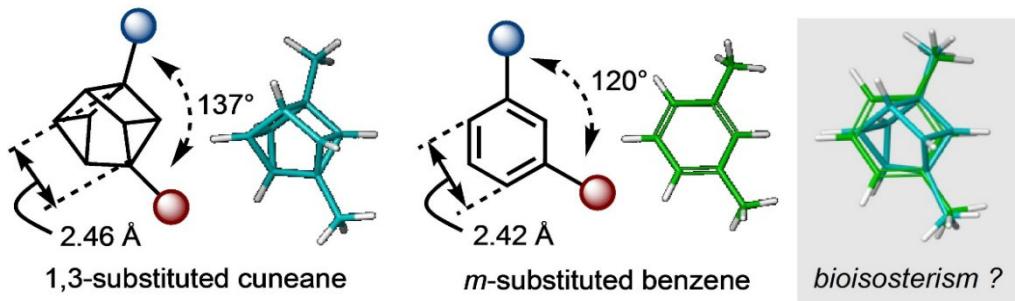
1. Вступ

Сучасна медична хімія перебуває у стані парадигмального зсуву від використання плоских (2D) ароматичних систем до тривимірних (3D) насичених каркасних структур. Ця тенденція, відома як "Escape from Flatland" («Втеча з площини»), зумовлена необхідністю

покращення фармакокінетичних властивостей лікарських засобів. Кубан, вперше синтезований Ітоном у 1964 році, та продукт його ізомеризації – кунеан, є унікальними об'єктами для цього напрямку завдяки своїй високій симетрії, значній енергії напруження та можливості слугувати біоізостерами бензольного кільця. Схема ізомеризації показана на рис. 1.

Рис. 1 Принципова схема утворення кунеану з кубану

Ключовою проблемою при роботі з цими системами є контрольована функціоналізація та перебудова каркаса. Найбільш ефективним шляхом перетворення кубанового скелета на кунеановий є каталіз солями срібла ($\text{Ag}(\text{I})$). Однак механізм цієї реакції, особливо фактори, що керують регіоселективністю у випадку заміщених похідних, залишається складним об'єктом для вивчення. Експериментальний підбір умов часто є ресурсомістким, що робить актуальним застосування методів обчислювальної хімії.


2. Обговорення результатів

Розробка лікарських препаратів часто спирається на використання бензольних та піridинових кілець. Проте насычення молекули плоскими ароматичними фрагментами $\text{C}(\text{sp}2)$ часто призводить до низької розчинності, небажаного π -стекінгу та швидкого метаболізму. Стратегія біоізостеризму передбачає заміну фрагментів на структурно подібні, але фізико-хімічно покращені аналоги.

Каркасні вуглеводні, такі як біциклопентан (BCP), кубан та кунеан, є насыченими $\text{C}(\text{sp}3)$ системами, які геометрично імітують вектори виходу замісників у бензольному кільці, але займають більший об'єм у просторі. Це дозволяє краще заповнювати активні центри ферментів-мішеней, підвищувати розчинність (через відсутність π -системи) та метаболічну стабільність.

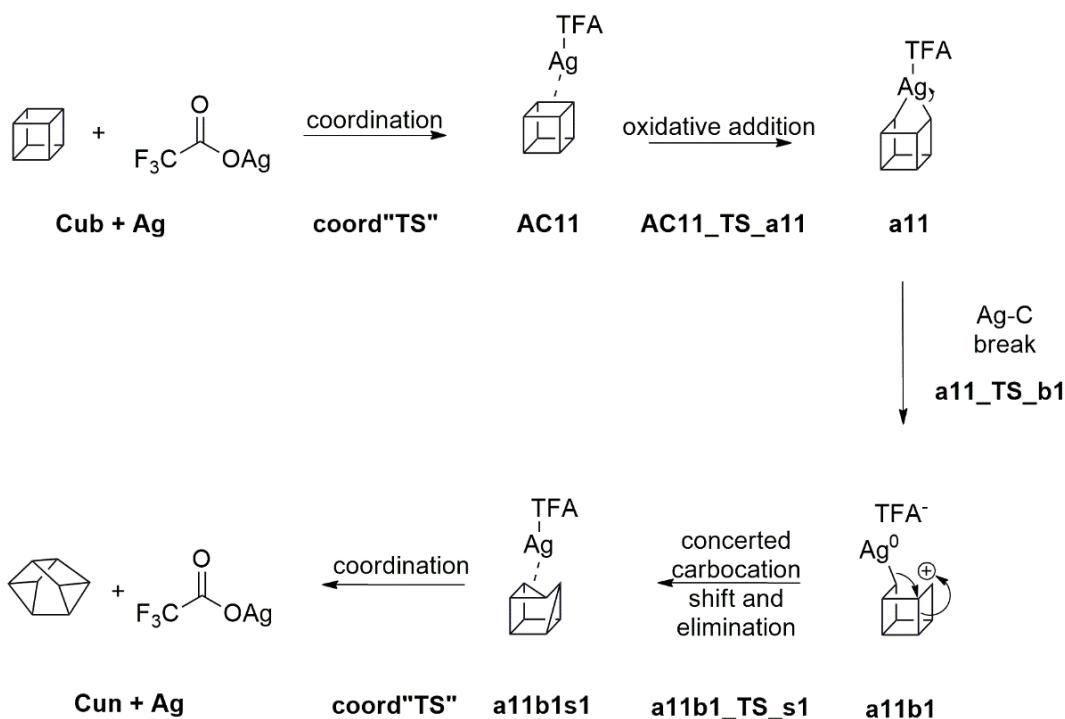
Особливий інтерес становить кунеан – поліедран точкової групи $\text{C}2\text{v}$, що утворюється з кубану. Дослідження показують чіткі геометричні паралелі між похідними кунеану та аренів:

1. 1,3-дизаміщений кунеан діє як насычений ізостер мета-заміщеного бензолу. Кут між замісниками та відстань між ними в обох системах є дуже близькими, що дозволяє зберігати біологічну активність при заміні ароматичного кільця на каркас. Візуалізація біоізостеризму даної сполуки наведена на рис. 2.

Рис. 2 Порівняння геометричних параметрів 1,3-заміщених кунеанів та мета-заміщених бензолів з перспективи ізостеризму

2. 2,6-дизаміщений кунеан виступає ізостером пара-заміщеного бензолу.

Для повного розкриття потенціалу кунеану як будівельного блоку для лікарських препаратів необхідна розробка методів синтезу, які б дозволяли отримувати полізаміщені похідні з точно визначеною позицією замісників. Це вимагає глибокого розуміння механізму ізомеризації вихідних кубанів.


Перетворення кубану в кунеан легко відбувається під дією каталізаторів перехідних металів, серед яких Ag(I) демонструє виняткову ефективність.

Аналіз літературних даних та попереднє моделювання дозволяють виділити три ключові стадії процесу (механізму), які проілюстровані на рис. 3:

1. Окиснювальне приєднання (Oxidative Addition), стадія AC11_TS_a11: Іон Ag(I) (електронна конфігурація d10) атакує один із напруженіх C-C зв'язків кубану з попередньо скоординованої перехідним станом (TS) структури AC11. Це призводить до розкриття зв'язку та утворення металоорганічного інтермедіату a11.

2. Гетеролітичне розщеплення зв'язку C-Ag, стадія a11_TS_b1: Це критична стадія, що визначає енергетичний бар'єр реакції. Відбувається розрив одного з новоутворених зв'язків вуглець-срібло з утворенням карбкатіонного центру a11b1. Перехідний стан цієї стадії поєднує в собі риси координаційної хімії та класичної органічної хімії іонів.

3. Перегрупування каркаса, стадія a11b1_TS_s1 з подальшою coord<TS>: Утворений інтермедіат a11b1 (некласичний карбокатіон) є високореакційним і швидко перегруповується для зняття напруження, формуючи структуру кунеану a11b1s1 та регенеруючи каталізатор.

Рис. 3 Механізм перегрупування кубану в кунеан

Вплив замісників на цьому шляху є вирішальним. Замісники в ядрі кубану можуть стабілізувати або дестабілізувати перехідні стани та інтермедіати через індуктивні та резонансні ефекти. Регіоселективність процесу (тобто, який саме з багатьох C-C-зв'язків розірветься) контролюється переважно здатністю замісників стабілізувати позитивний заряд, що розвивається на стадії гетеролітичного розщеплення. Шлях реакції спрямовується через той перехідний стан, де карбкатіонний центр формується поблизу електронодонорних або стабілізуючих груп.

Моделювання реакційної системи «Ag(I) + напруженій каркас» є нетривіальним завданням для квантової хімії. Тут стикаються дві проблеми: необхідність точного опису електронної структури перехідного металу (де важливі релятивістські ефекти та складна кореляція електронів) та коректний опис розриву ковалентних зв'язків з утворенням іонних часток.

Стандартні методи теорії функціонала густини (DFT), такі як популярний B3LYP або мета-GGA функціонали сімейства Minnesota (наприклад, M06-2X), часто дають значні похибки при розрахунку енергетичних бар'єрів для реакцій за участю перехідних металів. Помилка може сягати 5–10 ккал/моль, що є неприпустимим для прогнозування регіоселективності, де різниця між конкурючими шляхами може складати менше 1–2 ккал/моль.

Ключовою проблемою є відсутність еталонних наборів даних (бенчмарків), які б були спеціально сфокусовані на реакціях, що включають активацію C(sp³) зв'язків іоном Ag(I). Хоча існують загальні набори для каталізу перехідними металами (зокрема, Pd та Ni), їхня трансферність до специфічної хімії Ag(I) в умовах напруженого каркасу кубану не гарантована. Таким чином, вибір оптимального DFT функціоналу для цієї системи a priori стає неможливим, що вимагає розрахунку спеціалізованих еталонних (референтних) енергій.

Список використаних джерел

- [1] Son J. Y. et al. Exploring Cuneanes as Potential Benzene Isosteres... // J. Am. Chem. Soc. – 2023. – Vol. 145 (30). – P. 16355–16364.
- [2] Yang X.-C. et al. Catalytic Asymmetric Synthesis of Chiral Caged Hydrocarbons... // Angew. Chem. Int. Ed. – 2025.
- [3] Ma Y. Computational Research on Ag(I)-Catalyzed Cubane Rearrangement... // J. Org. Chem. – 2024. – Vol. 89 (5). – P. 3430–3440.
- [4] Steinmetz M., Grimme S. Benchmark study of the performance of density functional theory... // ChemistryOpen. – 2013. – Vol. 2 (3). – P. 115–124.

INFORMATION FUSION IN MULTISENSOR SYSTEMS FOR TECHNOLOGICAL PROCESS MONITORING

Ivan Chesanovskyi^{1*}, Iryna Bahinska¹

¹Bohdan Khmelnytskyi National Academy of the State Border Guard Service of Ukraine
Khmelnytskyi, Ukraine

*Corresponding author: chesanov.i@gmail.com, Khmelnytskyi, 29000, Ukraine

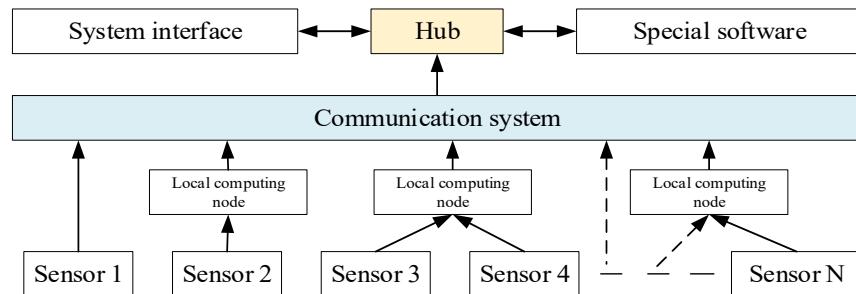
The article presents the results of a study on the efficiency of signal processing in multisensor systems for technological process monitoring based on information fusion methods. The influence of correlation between sensor signals on the informativeness and reliability of process state estimation is analyzed. It is shown that centralized processing and the application of information fusion methods (in particular PCA) provide higher accuracy and efficiency of technological process state assessment compared to decentralized approaches.

Keywords: сенсор, інформаційне злиття, машинне навчання, сегментація даних, мультисенсорні системи.

1. Introduction

The foundation of technological process monitoring systems, regardless of the application domain, is sensor systems that provide the acquisition of primary information about the current state of processes within the control area. As a rule, existing models of sensor data collection and processing involve aggregating data in the form of state vectors, meaning that the main signal processing is performed either directly by embedded sensor systems or at the level of local computing nodes [1, 2]. This approach allows significant simplification of information-analytical procedures at the system level, achieving higher energy efficiency and improving the reliability of the sensor system through structural redundancy. However, it substantially reduces the

informational potential of the sensor system due to the effective decrease in data dimensionality by low-computational-capacity devices (embedded systems). As a result, a considerable portion of features and existing patterns in the raw signals (data) is lost—features that could potentially enhance the situational awareness of the monitoring system (i.e., the dynamic assessment of the technological process state) through modern information fusion algorithms [3].

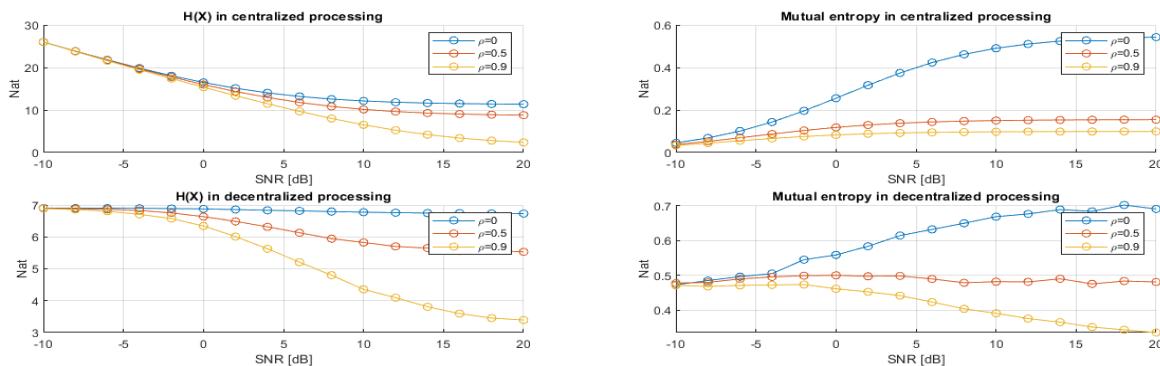

2. Results and discussion

In sensor systems, the completeness of the information collected within the monitored area is proportional to the number of sensors and the quality of the information (signals) received for processing [3]. Therefore, expanding the sensor network and improving the quality of individual sensors is traditionally considered the main way to increase the effectiveness of a monitoring system. However, this approach is not always justified, as there is a risk of informational redundancy that overloads computing nodes and leads to a decrease in overall efficiency [1]. Moreover, increasing sensor density results in a reduction of the total entropy of the information flow due to stronger mutual correlations between sensor signals [4]. If we assume that the sensor signals follow a normal distribution, the total entropy of the information flow can be expressed as

$$H(x_1, x_2, \dots, x_n) = \frac{1}{2} \log_2 [(2\pi e)^n \det(K)], \quad (1)$$

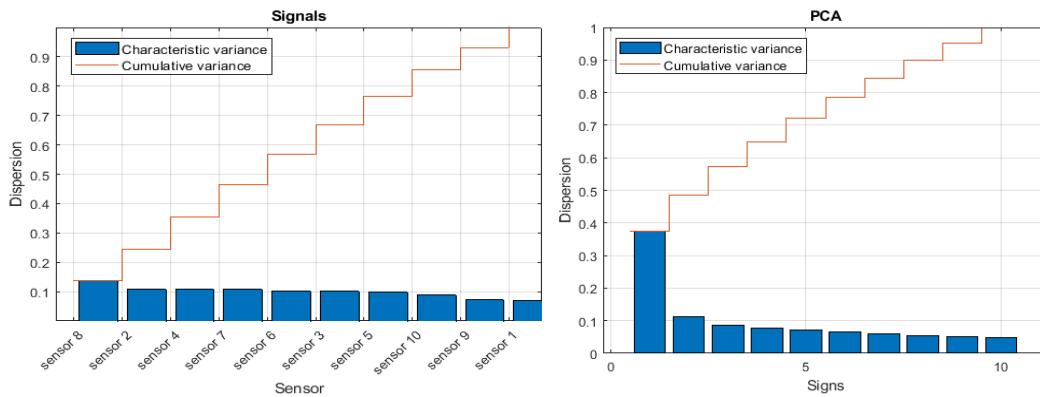
where K is the covariance matrix of the ensemble of sensor signals $\{x_n\}$.

The presence of the determinant $\det(K)$ in (1) leads to an asymptotic limitation of entropy as the sensor system density increases. This occurs due to the strengthening of correlation between sensors and, consequently, the growth of the off-diagonal elements of matrix K and the reduction of $\det(K)$. Decentralized processing of sensor signals by embedded systems (Fig. 1) further reduces entropy due to the loss of part of the features contained in inter-sensor correlations, as well as the impact of the local decision error probability.


Fig. 1 Structure of a Sensor System with Decentralized Signal Processing

It can be assumed that the use of a centralized processing model makes it possible to significantly increase the data entropy due to the mutual information contained in the sensor signals, considering that noise contributes a substantial share to the mutual information.

Figure 2 shows the results of experimental studies of a monitoring system containing 10 sensors (ρ – mutual correlation). The primary factor affecting the informativeness of the sensors was chosen to be the signal-to-noise ratio (SNR), which serves as a conditional indicator of the accuracy of the data contained in the sensor signals.


The results show that an increase in SNR affects both the self-information and the mutual information of the sensor signals differently, depending on the correlation values between them. This can be utilized in centralized processing of sensor signals using information fusion methods. The standard basis of the information fusion process is the transition from assessing the state of an individual sensor to assessing the state of the technological process as a whole. Such a transition

allows the introduction of an additional metric to determine the weight of an individual sensor signal when evaluating the overall state of the sensor system.

Fig. 2 Structure of a Sensor System with Centralized Signal Processing

Figure 3 presents a comparison of different approaches for determining the state of the technological process based on sensor signals and using the information fusion method with PCA [2].

Fig. 3 Assessment of the Impact of Signals and Features on Determining the Overall State of a Technological Process

The results of the calculations indicate that the joint processing of sensor signals using information fusion algorithms allows for significantly higher efficiency and accuracy in assessing the state of a technological process. This is achieved by utilizing the maximum number of features in the signals, which have not undergone prior processing. Although this approach requires handling larger volumes of information and employing greater computational resources, it enables higher reliability and accuracy.

References

- [1] H. Wang, K. Yao, i D. Estrin, Information-theoretic approaches for sensor selection and placement in sensor networks for target localization and tracking, *J. Commun. Netw.* 2005. № 7/4, p. 438–449. doi: 10.1109/JCN.2005.6387986.
- [2] I. Chesanovskyi, D. Mul, A. Vavrichen, R. Horodyskyi, R. Khoptinskiy, i S. Tabenskyi, «Principal Component Analysis in Matched Filtering of Signals», в 2024 IEEE 17th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv, Ukraine: IEEE, 2024, p. 1-4. doi: 10.1109/TCSET64720.2024.10755643.
- [3] System-level design of a roaming multi-modal multi-sensor system for assessing and monitoring civil infrastructures in Sensor Technologies for Civil Infrastructures, Elsevier, 2014, p. 172–203. doi: 10.1533/9781782422433.1.172.

СЕКЦІЯ 5 / SECTION 5

Соціальні, економічні та освітні аспекти впровадження інноваційних матеріалів і технологій

Social, economic, and educational aspects
of implementing innovative materials
and technologies

PSYCHOLOGICAL MECHANISMS OF SELF-REGULATION AND SELF-HELP OF THE INDIVIDUAL IN THE CONTEXT OF DIGITAL TRANSFORMATION OF SOCIAL AND EDUCATIONAL SYSTEMS

Olena Kuleshova¹, Olexey Rosolovich²

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

*Corresponding author: kulalvit@gmail.com, Khmelnitskyi, 29000, Ukraine

The paper examines the psychological mechanisms of self-regulation and self-help in the context of digital transformation of social and educational systems. Emphasis is placed on how innovative technologies influence emotional stability, cognitive functioning, and adaptive behavior. The study highlights the potential of digital tools to strengthen resilience and support personal well-being in complex situations.

Keywords: self-regulation, self-help, digital technologies, resilience, education.

1. Introduction

The rapid implementation of innovative materials and technologies in the social, economic, and educational spheres generates new demands for psychological resilience and personal adaptability. Transformations in professional practices, the digitalization of the educational environment, changes in patterns of social interaction, and the development of high-tech solutions create conditions of increased uncertainty, often accompanied by stress, anxiety, cognitive overload, and reduced self-regulation efficiency [1].

At the same time, innovative technologies may serve as a resource for enhancing psychological resilience. In particular, digital self-help platforms, mobile applications for tracking emotional states and behavioral patterns, biofeedback tools, as well as educational modules for the development of self-regulation are gradually being integrated into learning and social contexts [2]. In such an environment, the study of psychological aspects of self-regulation and self-help as key mechanisms of successful adaptation to complex life situations becomes especially relevant.

Contemporary research emphasizes that the ability to self-regulate has a complex structure that includes cognitive, motivational, emotional, and behavioral components determining personal performance and overall quality of life [3]. Under conditions of intensive technological development, these components are additionally strained, which necessitates updating psychological support models and developing new approaches to fostering self-help skills.

The purpose of this paper is to analyze the psychological mechanisms of developing self-regulation and self-help in the context of social, economic, and educational changes driven by innovative technologies, and to outline the potential of digital tools as means of enhancing psychological resilience.

2. Results and discussion

In situations of rapid change and increased intensity of information flows, self-regulation becomes a central mechanism of emotional and behavioral stability. It ensures the ability to control one's reactions, maintain effective performance under stress, and adapt to new demands. Within the context of the digital modernization of social systems, such skills gain particular importance for students, workers in technological industries, and specialists in social-interaction professions who operate under high levels of emotional strain.

Modern technologies may act both as stress-producing and stress-buffering factors, giving the digital environment a dual psychological impact. On the one hand, the dynamic development of digital innovations is accompanied by increased cognitive load, the need for continuous adaptation to new information streams, rapidly evolving interfaces, and new formats of work. This creates a

sense of informational instability, heightens anxiety, contributes to the development of «digital overload», and may provoke a loss of perceived control over one's activity. In addition, the digitalization of social relations often results in social fragmentation, increased interpersonal distance, reduced quality of emotional support, and a heightened subjective sense of loneliness.

On the other hand, innovative technologies create new opportunities for strengthening psychological resilience and developing self-regulation skills. They offer tools that enable individuals to effectively monitor their psycho-emotional state, analyze stress reactions, and apply self-help techniques in a timely manner. Such tools include biofeedback programs that provide real-time physiological indicators; digital journals and mobile apps for tracking mood, emotions, and behavioral reactions; interactive models for monitoring emotional states that help individuals become aware of the dynamics of their experiences; as well as numerous online platforms for cultivating mindfulness, relaxation, and emotional regulation practices [4]. These tools promote self-observation skills, reduce emotional tension, and foster internal competencies of psychological self-support.

Psychological self-regulation in a technologically saturated environment functions as an integrated mechanism that enables adaptation to digital challenges and incorporates several interrelated components: awareness of one's emotional state as the ability to identify, recognize, and interpret personal experiences; stress management through relaxation techniques, breathing exercises, mindfulness practices, and cognitive restructuring; cognitive control, which includes sustained attention, inhibition of impulsive reactions, and maintenance of productive thinking; behavioral flexibility, defined as the capacity to modify strategies of action depending on situational demands; and well-developed self-help strategies ensuring efficient resource recovery and personal well-being in conditions of ongoing digital transformation.

Self-help systems are becoming increasingly accessible due to digital platforms offering relaxation programs, cognitive-behavioral techniques, activity-planning tools, and emotional-regulation strategies. In the context of educational transformations, these resources are actively integrated into academic courses and student-support programs.

Scientific evidence demonstrates the effectiveness of hybrid psychological-support models that combine traditional approaches with innovative materials and technologies. For example, the use of sensory devices, wearable gadgets, and VR-based emotional regulation simulators enables the modeling of stressful situations and the practice of coping strategies in a safe environment [5].

Within the educational environment, the development of self-regulation plays a central role, as it significantly determines academic success, the ability to work independently, professional growth, and psychological well-being. The modern educational process, increasingly enriched with innovative technologies, creates new opportunities for developing these skills. Personalized digital platforms, electronic learning environments, and interactive educational modules make it possible to track individual learning trajectories, adjust learning goals, adapt material complexity, and maintain motivation. They help students not only optimize their educational process but also identify signs of cognitive or emotional overload, which is key to preventing academic burnout.

The application of innovative materials and technologies in education shapes essential competencies and strengthens psychological resilience. First, such technologies foster digital literacy, which becomes an integral part of self-regulation by enabling efficient management of information flows, organization of the learning environment, and establishment of healthy boundaries in digital interaction. Second, digital tools significantly expand opportunities for self-observation and reflection: students gain access to analytical reports on their activity, progress, and learning style, which helps them better understand their strengths and developmental needs. Third, innovative learning environments support motivational self-regulation through interactivity, gamification, achievement visualization, and opportunities for individualized pacing, which enhance self-support and learning satisfaction.

In addition, the digitalization of education ensures access to diverse psychological-support resources in online formats – from informational platforms to mobile applications, online counseling, and digital emotional-regulation simulators. This creates conditions for integrating elements of psychological self-help into everyday learning processes and strengthens students' capacity to consciously manage their emotional state and seek technological support when necessary.

Thus, the modern educational space functions as a key platform for the development of self-regulation and self-help competencies, which are essential for students' adaptation to rapidly changing social, economic, and technological challenges. The integration of innovative materials and digital technologies contributes to the formation of a more flexible, resilient, and psychologically aware individual capable of effectively responding to the demands of contemporary information society.

3. Conclusions

The psychological aspects of developing self-regulation and self-help are critically important in the context of social, economic, and educational transformations driven by innovative technologies. The expansion of digital tools and the use of new materials and technological solutions create both risks and substantial opportunities for strengthening psychological resilience.

Modern approaches to supporting individuals in complex life situations involve integrating traditional psychological practices with advanced technological tools, ensuring more flexible, personalized, and accessible forms of self-help. Educational institutions play a key role in the development of self-regulation competencies by providing students with knowledge, digital resources, and practices that enhance psychological well-being.

Future research should focus on developing digital support protocols, evaluating the effectiveness of innovative technologies in shaping self-help skills, and creating integrated psychological-support models relevant to contemporary technological society.

References

- [1] Schäfer, S. K., von Boros, L., Schaubruch, L. M., et al.: Digital interventions to promote psychological resilience: a systematic review and meta-analysis. *npj Digital Medicine*, Vol. 7, Article 30, 2024.
- [2] Ang, W. H. D., Chew, H. S. J., Dong, J., Yi, H., Mahendren, R., Lau, Y.: Digital training for building resilience: systematic review, meta-analysis, and meta-regression. *Stress and Health*, Vol. 38 (5), pp. 848–869, 2022.
- [3] Diano, F., Sica, L. S., Ponticorvo, M.: A systematic review of mobile apps as an adjunct to psychological interventions for emotion dysregulation. *International Journal of Environmental Research and Public Health*, Vol. 20 (2), Article 1431, 2023.
- [4] Gong, X.-G., Wang, L.-P., Rong, G., Zhang, D.-N., Zhang, A.-Y., Liu, C.: Effects of online mindfulness-based interventions on the mental health of university students: a systematic review and meta-analysis. *Frontiers in Psychology*, Vol. 14, Article 1073647, 2023.
- [5] Faza, A., Lestari, I. A.: Self-regulated learning in the digital age: a systematic review of strategies, technologies, benefits, and challenges. *International Review of Research in Open and Distributed Learning*, Vol. 26 (2), pp. 23–58, 2025.

КРЕАТИВНО-ІННОВАЦІЙНЕ МИСЛЕННЯ СТУДЕНТІВ: ПСИХОЛОГІЧНІ УМОВИ ТА ОСВІТНІ ТЕХНОЛОГІЇ РОЗВИТКУ

Ольга Ігумнова, Олександр Войчишин, Юрій Моравецький
Хмельницький національний університет

The study explored psychological mechanisms and conditions for developing students' creative-innovative thinking and assessed modern educational technologies. Intrinsic motivation, learning autonomy, positive emotional climate, and psychological safety support active project

participation. Interactive methods, design thinking, VR simulations, and reflective practices enhance creativity, adaptability, and awareness, fostering innovative competencies.

Keywords: creative thinking, innovative thinking, psychological conditions, educational technologies, students.

Постановка проблеми. У сучасному освітньому середовищі зростає потреба у формуванні у студентів здатності до креативного та інноваційного мислення як ключового ресурсу адаптації до динамічних соціальних і професійних викликів. Інноваційне мислення дозволяє не лише ефективно вирішувати комплексні проблеми, а й активно генерувати нові ідеї, трансформувати знання у практичні результати і підвищувати конкурентоспроможність майбутніх фахівців.

Мета дослідження: визначити психологічні умови, механізми та освітні технології, які сприяють розвитку інноваційної компетентності студентів в освітньому процесі.

Виклад основного матеріалу. У сучасному освітньому просторі креативно-інноваційне мислення постає як ключовий психологічний ресурс студентів, що забезпечує їх конкурентоздатність, емоційну стійкість та професійне зростання. Формування такого типу мислення вимагає комплексного підходу, який поєднує психологічні чинники, освітні технології та сприятливе середовище для експериментування й самовираження.

Креативно-інноваційне мислення слід розуміти як інтегративну систему когнітивних, мотиваційних та емоційно-регуляційних механізмів, що забезпечують здатність індивіда генерувати оригінальні рішення, переосмислювати наявний досвід та створювати нові способи діяльності. До основних психологічних механізмів розвитку креативно-інноваційного мислення належать:

1. Когнітивна гнучкість – здатність студентів адаптувати способи мислення під час вирішення нових або складних завдань, змінювати стратегії і порівнювати альтернативні підходи.
2. Дивергентне мислення – уміння генерувати широкий спектр ідей і варіантів вирішення проблем, виходячи за рамки стандартних рішень.
3. Критичний аналіз інформації – оцінювання власних і чужих ідей за критеріями доцільності та інноваційності.
4. Емоційна регуляція – здатність підтримувати позитивний емоційний стан, толерувати невизначеність і стрес, що супроводжують творчий процес (майндфулнес, релаксаційні техніки, стрес-менеджмент).
5. Мотиваційні фактори – внутрішня потреба у творчості, прагнення самореалізації та пізнання нового, готовність долати труднощі та невдачі під час експериментування.

Дослідження свідчать, що ці характеристики можуть цілеспрямовано розвиватися в освітньому процесі за умови спеціально створених психологічних та педагогічних умов. Взаємодія цих механізмів визначає рівень готовності студентів до генерації інноваційних рішень і творчого підходу до навчальної діяльності [1].

Освітнє середовище, орієнтоване на навчальну автономію, є ключовим чинником розвитку креативно-інноваційного мислення студентів. Внутрішня мотивація та автономія виступають основними умовами, що забезпечують активне залучення студентів у різні форми діяльності. Високий рівень внутрішньої мотивації стимулює ініціативність, самостійність та зацікавленість у пошуку нових рішень, тоді як навчальна автономія дозволяє студентам обирати власні підходи до виконання завдань, експериментувати з методами та брати відповідальність за результати своєї роботи. Такий підхід формує відчуття власної ефективності, стимулює творчий потенціал та забезпечує готовність до генерації інноваційних рішень.

До психологічних умов, які сприяють розвитку креативно-інноваційного мислення, належать:

1. Внутрішня мотивація та навчальна автономія – основні чинники, що забезпечують активне залучення студентів у різні форми діяльності. Високий рівень внутрішньої мотивації

сприяє ініціативності, самостійності та зацікавленості у пошуку нових рішень, а навчальна автономія дозволяє студентам обирати власні підходи до виконання завдань, експериментувати з методами та брати відповідальність за результати своєї роботи. Такий підхід формує відчуття власної ефективності та стимулює творчий потенціал.

2. Позитивний емоційний фон і низький рівень навчального стресу – створюють психологічні умови, що сприяють відкритості до нових ідей, експериментів і нестандартних рішень. Коли студент не відчуває надмірного тиску і страху помилок, зростає готовність до ризику в мисленні та активної участі у творчих завданнях. Позитивний емоційний стан також підтримує стійкість до фрустрації, що часто супроводжує процес інноваційного пошуку.

3. Культура підтримки та психологічної безпеки – створює умови, за яких студент може вільно висловлювати власні думки, пропонувати нестандартні рішення та експериментувати без ризику осуду. Така атмосфера сприяє колективному обміну ідеями, підтримці співпраці та розвитку довіри між учасниками навчального процесу. Психологічна безпека стимулює відкритість до критики і водночас формує готовність до самопокращення та саморефлексії.

4. Когнітивні стилі, орієнтовані на гнучкість, варіативність та схильність до ризику – забезпечують здатність студентів швидко адаптуватися до нових ситуацій, порівнювати різні підходи та оцінювати альтернативні рішення. Гнучке мислення дозволяє виявляти нові зв'язки між знаннями, комбінувати ідеї та створювати інноваційні продукти. Схильність до ризику підтримує готовність пробувати нестандартні стратегії та експериментувати з різними методами розв'язання завдань.

5. Здатність до рефлексії – допомагає студентам переосмислювати процес власного мислення, оцінювати ефективність використаних стратегій та шукати оптимальні підходи до розв'язання проблем. Рефлексивна активність стимулює саморегуляцію, підтримує усвідомленість навчального процесу та сприяє накопиченню особистого досвіду, що є основою для розвитку креативного та інноваційного мислення.

У сукупності ці психологічні умови та освітні підходи створюють багатовимірне середовище, яке сприяє формуванню інноваційної компетентності, розвитку креативного потенціалу та готовності студентів ефективно вирішувати складні професійні та навчальні завдання [2].

Серед найбільш ефективних технологій виділяють:

1. Навчально-проектні технології (Project-Based Learning, PBL) – передбачають роботу над реальними кейсами, командну взаємодію, постановку проблем і пошук практичних рішень. Вони дозволяють студентам застосовувати когнітивні та емоційні механізми креативності у реальному контексті.

2. Дизайн-мислення (Design Thinking) – формує навички емпатії, генерації ідей, прототипування і тестування, акцентуючи увагу на потребах користувача. Цей підхід сприяє розвитку дивергентного мислення, когнітивної гнучкості та критичного аналізу інформації.

3. Цифрові технології (AR/VR, інтерактивні платформи, гейміфікація) – стимулюють когнітивну активність, моделюють реальні ситуації, тренують адаптивне мислення та управління стресом у безпечному середовищі.

4. Технології розвитку критичного мислення (кейс-метод, дискусії, проблемне навчання) – дозволяють оцінювати ризики, альтернативи та ефективність рішень, що формує навички самостійного аналізу та рефлексії.

5. Коучингові та фасилітаційні методи – підтримують мотивацію, рефлексію, емоційну саморегуляцію та відповідальність за результат, створюючи умови психологічної безпеки та підтримки.

Ефективне формування креативно-інноваційного мислення можливе завдяки впровадженню сучасних освітніх технологій, які поєднують командну роботу, інтерактивні методи, цифрові інструменти та рефлексивні практики. Практичні приклади інтеграції таких технологій включають:

- Командні проєкти з реальних кейсів локальної громади – студенти працюють над вирішенням конкретних проблем, застосовуючи міждисциплінарні підходи та спільно генеруючи ідеї.
- Інтерактивні воркшопи з елементами дизайн-мислення – спрямовані на розвиток навичок емпатії, генерації ідей, прототипування та тестування рішень.
- VR-симуляції для тренування адаптивного мислення – моделюють стресові або непередбачувані ситуації, сприяючи розвитку когнітивної гнучкості та стресостійкості.
- Рефлексивні журнали та щоденники ідей – використовуються для аналізу власних стратегій мислення, емоційного стану та результатів творчої діяльності.

Інтеграція цих технологій у навчальний процес створює багатовимірне освітнє середовище, яке поєднує когнітивну стимуляцію, емоційну підтримку та рефлексію. Це сприяє підвищенню адаптивності студентів і розвитку їхніх інноваційних компетентностей.

Висновки. Формування креативно-інноваційного мислення є комплексним процесом, що поєднує когнітивні, мотиваційно-емоційні та соціальні чинники. Навчально-проектні, цифрові, інтерактивні та рефлексивно-орієнтовані технології ефективно стимулюють розвиток інноваційної компетентності. Психологічні умови сприяють підвищенню готовності студентів до інноваційної діяльності. Використання комплексного підходу в освітньому процесі дозволяє формувати творчі, гнучкі та адаптивні стратегії мислення, необхідні для сучасного професійного середовища.

Список використаних джерел

- [1] Karakus, I. (2024). *University students' cognitive flexibility and critical thinking dispositions*. Frontiers in Psychology, 15. <https://doi.org/10.3389/fpsyg.2024.1420272>.
- [2] Tzachrista, M., Gkintoni, E., & Halkiopoulos, C. (2023). *Neurocognitive profile of creativity in improving academic performance – a scoping review*. Educational Sciences, 13 (11), 1127. <https://doi.org/10.3390/educsci13111127>.

THE IMPACT OF DIGITAL TECHNOLOGIES ON MENTAL HEALTH AND INDIVIDUAL BEHAVIOR

Olena Kuleshova¹, Yurii Krytskiy²

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

*Corresponding author: kulalvit@gmail.com *Khmelnitskyi, 29000, Ukraine*

The paper analyzes how digital technologies influence mental health and behavior in social, economic, and educational contexts. Digital environments reshape communication, work, and learning, offering benefits such as broader access to information and new forms of psychological support. At the same time, they pose risks, including digital addiction, anxiety, social isolation, and cognitive overload. The study stresses the need for balanced digital use and strengthened media literacy.

Keywords: digital technologies, mental health, behavior, digitalization, techno-stress, education, social interaction.

1. Introduction

The digitalization of contemporary society has resulted in profound transformations across social, economic, and educational domains. The rapid integration of digital technologies, innovative materials, and technological solutions has reshaped communication patterns, forms of social interaction, and the organization of work and learning. These developments necessitate a deeper examination of the impact of digital environments on mental health and individual behavioral

patterns [1]. Under these conditions, the analysis of both the beneficial outcomes of digital technologies (e.g., expanded access to education, information, and cognitive resources) and their associated risks (e.g., heightened anxiety, digital addictions, and increased social isolation) becomes particularly relevant.

The digital milieu increasingly determines the dynamics of social behavior. Social networking platforms, online communication, and digital media ecosystems offer new opportunities for cultivating social capital, maintaining social ties, and forming interest-based communities. However, excessive engagement with digital platforms is often associated with the phenomenon of social comparison, which may negatively influence self-esteem and contribute to the manifestation of anxiety and depressive symptoms.

2. Results and Discussion

Empirical studies indicate that regular use of digital communication platforms can enhance perceived social support; nevertheless, excessive dependency on these platforms correlates with a decline in the quality of face-to-face interactions, reduced emotional sensitivity, and increased exposure to digital aggression and cyberbullying [2]. These risks are particularly pronounced among children and adolescents, who demonstrate heightened vulnerability to gaming and social-media addictions, disturbances in sleep and attention regulation, and increased impulsivity.

The socio-psychological dimension of digitalization also encompasses the transformation of personal identity. The construction of a “digital self,” the curation of online personas, and the maintenance of digital reputation have become central to modern self-presentation. While these practices may encourage creativity and self-expression, they simultaneously contribute to psychological stress driven by the constant need to uphold an idealized online image.

From an economic perspective, the expansion of digital technologies has generated new professional opportunities, employment models, and business ecosystems. Remote work, automation, and the gig economy have altered the structure of the labor market and reshaped professional practices. Digital innovation enhances productivity and operational efficiency and enables flexible work arrangements. However, these benefits are accompanied by psychological risks, including professional burnout, blurred work-life boundaries, techno-stress, and heightened uncertainty in an increasingly volatile labor market [3].

The digital divide continues to reinforce socio-economic disparities by limiting access to educational and professional resources for certain population groups. Restricted access to digital materials and technological infrastructure is associated with increased stress levels, reduced self-efficacy, and stigmatization of individuals with insufficient digital competencies.

Simultaneously, digital environments foster the development of innovative psychological and psychotherapeutic practices, including online counseling, mobile applications for mental health monitoring, and the use of artificial intelligence in the detection and treatment of psychological disorders. These approaches expand access to psychological support services and improve early identification of risk factors.

In the educational sphere, digital technologies function as central instruments of pedagogical modernization. Digital learning platforms, multimedia resources, adaptive learning systems, and intelligent training simulators promote the individualization of learning, facilitate the development of digital competence, and enhance critical thinking skills [4]. Nonetheless, the increased reliance on digital materials can induce cognitive overload, reduce attention span, and diminish learning motivation. Although remote learning broadens access to educational resources, it may simultaneously intensify social isolation among students and decrease interpersonal interactions, which are integral to psychosocial development.

A significant advantage of digital education is the advancement of media literacy and digital self-regulation—competencies essential for maintaining mental health in an information-saturated environment. Evidence suggests that skills related to critical analysis of media content and online safety substantially mitigate risks associated with digital addiction, anxiety, and stress.

Innovative technologies also reinforce inclusive education through adaptive materials, VR/AR solutions, and multimodal learning tools, thereby expanding educational opportunities for students with special needs and enhancing their social integration and psychological well-being.

Digital technologies exert both positive and negative psychological effects. On the one hand, they enhance cognitive functioning (e.g., faster information processing, improved multitasking) and provide emotional and behavioral benefits (e.g., access to social support, opportunities for creativity and civic engagement) [5]. On the other hand, negative consequences include increased dependence on digital devices, sleep disturbances, digital burnout, reduced capacity for sustained concentration, and emotional desensitization caused by continuous exposure to high-intensity informational stimuli. A notable outcome is the emergence of reactive-analytical thinking, whereby individuals respond predominantly to short, rapidly changing stimuli (e.g., notifications), impairing their ability to sustain deep cognitive engagement.

3. Conclusions

Digital technologies, as a central driver of contemporary innovation, exert a multidimensional and increasingly pervasive influence on mental health and individual behavioral functioning. Their impact manifests across several interrelated domains, reshaping traditional models of socialization, communication, work, and learning. In the social sphere, digital platforms broaden communicative possibilities by facilitating immediate access to social networks, virtual communities, and diverse forms of interpersonal exchange. At the same time, they generate new psychological risks, including heightened exposure to social comparison, cyberbullying, and digital dependency, all of which may undermine emotional stability and contribute to long-term mental-health disturbances.

In the economic domain, digital systems enable the emergence of novel employment formats—such as remote work, platform-based labor, and automated production workflows—fundamentally transforming the architecture of the labor market. These advancements offer substantial benefits, including increased flexibility and operational efficiency. However, they simultaneously introduce challenges associated with occupational stress, blurred work-life boundaries, job precarity, and intensified cognitive demands. Such conditions elevate the likelihood of technostress, professional burnout, and psychological strain in an increasingly competitive digital economy.

Within the educational sector, digitalization drives the modernization of instructional processes through multimedia learning environments, adaptive platforms, and interactive simulation tools. These technologies foster individualized learning trajectories and promote the development of digital competence. Nevertheless, they also heighten the necessity for advanced self-regulation, sustained attention management, and robust media-literacy skills, which act as protective factors against cognitive overload, distraction, and reduced intrinsic motivation among learners.

Ensuring the balanced integration of digital technologies, fostering a resilient digital culture, and systematically strengthening media literacy are therefore essential prerequisites for safeguarding mental well-being in the context of rapid and ongoing digital transformation. Addressing these challenges requires a coordinated interdisciplinary framework that incorporates insights from psychology, education, economics, public health, and information science. Continued empirical research is necessary to develop comprehensive, evidence-based strategies aimed at preventing adverse psychological outcomes, promoting adaptive patterns of digital engagement, and maximizing the societal, economic, and educational benefits of technological innovation.

References

- [1] Twenge, J. M.: *iGen: Why Today's Super-Connected Kids Are Growing Up Less Rebellious, More Tolerant, Less Happy—and Completely Unprepared for Adulthood*. Atria Books, 2017.
- [2] Kowalski, R. M., Limber, S.: *Cyberbullying: Bullying in the Digital Age*. Wiley, 2013.

[3] Tarafdar, M., Cooper, C. L., Stich, J. F.: The technostress trifecta—techno-eustress, techno-distress and design: theoretical directions and an agenda for research. *Information Systems Journal*, Vol. 29 (1), pp. 6–42, 2019.

[4] Redecker, C.: European Framework for the Digital Competence of Educators. EU Publications, 2017.

[5] Hobbs, R.: *Digital and Media Literacy: Connecting Culture and Classroom*. Wiley, 2020.

PSYCHOLOGICAL BARRIERS TO THE PERCEPTION OF INNOVATIONS IN THE EDUCATION SYSTEM AND WAYS TO OVERCOME THEM

Alla Rudenok, Olena Petiak, Oleksandr Alieksieiev

Khmelnitskyi National University, Khmelnitskyi, Ukraine

Corresponding author: petiako@khnmu.edu.ua

Khmelnitskyi, 29000, Ukraine

The article analyzes the psychological barriers that hinder the perception and implementation of innovations in the education system and identifies their multidimensional nature at the emotional, cognitive, behavioral, and organizational-psychological levels. A set of approaches to overcoming these barriers is substantiated, aimed at enhancing teachers' psychological readiness, developing an innovative culture, and ensuring the effective digital transformation of education.

Keywords: psychological barriers, educational innovations, resistance to change, digital competence, innovative culture, professional readiness, educational environment.

1. Introduction

The modern education system is undergoing a dynamic stage of renewal in which digital technologies and innovative pedagogical approaches play a leading role. Despite the growing availability of technological solutions, the key factor in their effective implementation remains teachers' psychological readiness for change. Internal barriers that arise at the emotional, cognitive, behavioral, and organizational levels create resistance to innovation and complicate adaptation to contemporary educational demands. Understanding the nature of these barriers makes it possible to identify ways to support educators and create conditions for the successful integration of innovations into professional practice.

2. Results and discussion

Modern education is undergoing an intensive process of digital transformation driven by the development of innovative technologies and the growing demands for digital competencies among teachers and students. The effectiveness of these changes depends not only on technical capacities but also on the psychological readiness of participants in the educational process to accept and integrate innovations. Psychological barriers thus become a key factor that may slow down the implementation of new approaches, intensify resistance to change, and reduce teachers' motivation. As emphasized in the works of D. Kahneman, K. Lewin, E. Rogers, A. Bandura, and contemporary researchers, the most significant difficulties arise at the stage of initial perception of novelty, when cognitive distortions, emotional tension, and reduced self-efficacy become activated [1]. In education, such barriers manifest as internal resistance, avoidance of innovative activity, and a decrease in professional confidence and resilience. Therefore, the introduction of educational innovations has primarily a psychological nature, as it affects professional beliefs, established practices, and teachers' emotional readiness. Awareness and reduction of these barriers are essential for the success of contemporary reforms.

In this context, it becomes necessary to identify and analyze the main psychological barriers that hinder the effective perception and integration of new approaches into the educational environment. Key Psychological Barriers to Innovation Perception in Education.

1. Emotional barriers. The most common emotional barriers include anxiety about the new, fear of making mistakes, feelings of overload, and uncertainty about one's own competence. According to A. Bandura, low professional self-efficacy leads to avoidance of innovation. For teachers, this is reflected in the reluctance to use digital tools, interactive methods, or artificial intelligence technologies.

2. Cognitive barriers. These include rigidity of thinking, stereotypes about the "danger" or "uselessness" of innovations, underestimation of their effectiveness, and a tendency toward biased judgments. Cognitive distortions such as risk avoidance or the status quo effect significantly slow down teachers' readiness to transition to technological solutions.

3. Behavioral barriers. These manifest as passivity, avoidance of learning, reduced initiative, and minimal compliance with innovative requirements. Behavioral resistance often creates a negative professional climate within a team and reinforces patterns of "innovative inertia."

4. Communicative barriers. Innovation frequently requires teamwork, experience exchange, and interdisciplinary interaction. Lack of communicative competence or fear of negative evaluation from colleagues may significantly inhibit change.

5. Organizational-psychological barriers. These include a lack of administrative support, weak development of an innovation-oriented corporate culture, unclear expectations, and insufficient informational or motivational resources. Such factors amplify individual barriers and create an overall climate of resistance.

The conducted analysis demonstrates that psychological barriers to innovation perception are multidimensional and manifest at emotional, cognitive, behavioral, and organizational-psychological levels. Their cumulative impact generates a state of internal resistance, which slows the pace of digital modernization, reduces the quality of the educational process, and intensifies teachers' professional burnout. Importantly, without targeted psychological support, even well-equipped technological innovations lose effectiveness, since teachers' subjective readiness is the decisive factor in successful integration.

Therefore, an important scientific and practical task is to identify strategies that minimize the negative influence of these barriers and ensure sustainable adaptation of participants in the educational process to innovation-driven changes. Identifying effective ways to overcome resistance is not only a condition for optimizing teachers' professional activity but also a key factor in enhancing the innovative potential of educational institutions.

Effective implementation of innovations in the education system is impossible without targeted elimination of psychological barriers that block or slow down change processes. According to the concepts of E. Rogers, A. Bandura, K. Lewin, and contemporary researchers of educational innovation [2], overcoming resistance requires a complex impact on the emotional, cognitive, and behavioral spheres of the individual. The following directions have been empirically and theoretically proven to be effective:

1. Developing psychological readiness for innovation as a separate professional competence.

Psychological readiness for change is a key condition for adopting innovations and integrating them into educational practice. It includes the motivational-value component (attitude toward novelty), cognitive component (awareness of the importance of innovation), regulatory component (ability to manage emotional tension), and behavioral component (readiness to act in uncertain conditions).

Bandura's research shows that increasing self-efficacy reduces anxiety and supports the acceptance of innovative actions. Therefore, it is advisable to implement training programs on readiness for change, individual and group coaching, and professional self-development programs that foster a positive orientation toward innovation.

2. Enhancing teachers' digital and technological competence.

Lack of knowledge and skills is one of the strongest triggers of emotional resistance. According to the TPACK model and UNESCO recommendations, the development of technological competence should include:

- mastering basic digital tools;
- developing skills for integrating technologies into teaching;
- learning principles of digital safety;
- increasing teachers' innovation culture.

It has been proven that teachers with higher digital competence show lower anxiety, greater openness to innovation, and higher ability to flexibly update the educational process. Therefore, systematic professional development courses, methodological workshops, and mentoring from experienced colleagues serve as effective tools for reducing cognitive and emotional barriers.

3. Developing an innovative organizational culture.

From the perspective of organizational psychology (K. Lewin, E. Schein), innovation-related barriers often arise collectively rather than individually. Therefore, building an innovation-oriented culture is crucial for reducing resistance.

Such a culture includes: valuing creativity, initiative, experimentation, tolerance for mistakes, support of constructive risk-taking, open communication, and experience exchange, as well as management decisions aimed at supporting change.

4. Psychological support and guidance during change.

Emotional barriers are frequently linked to overload, fear of failure, and high levels of professional stress. According to H. Selye's stress model and modern approaches to emotional regulation [3], psychological support is essential for constructive acceptance of innovations.

Effective tools include: emotional competence development programs, resilience training, cognitive-behavioral regulation techniques (reframing, managing thought patterns), supervision, and psycho-pedagogical consultations.

Teachers who receive systematic support demonstrate greater ability to overcome emotional resistance and adapt more steadily to changes.

5. Improving organizational communication and reducing uncertainty.

Uncertainty and unclear expectations provoke cognitive and emotional resistance, as confirmed by organizational stress models [4,5]. Therefore, educational institutions should ensure:

- clear communication about goals and stages of innovation implementation;
- availability of methodological and informational resources;
- gradual introduction of changes;
- regular feedback.

When teachers understand the purpose, benefits, timeframe, and their roles in the innovation process, resistance significantly decreases.

6. Supporting professional motivation and recognition of innovative activity.

Motivation is a crucial factor in overcoming behavioral barriers. According to self-determination theory (R. Ryan & E. Deci) [7], internal motivation emerges when the needs for competence, autonomy, and relatedness are met.

Effective approaches include:

- encouraging innovative initiatives;
- creating opportunities for professional growth;
- public recognition of contributions to innovation;
- supporting creative projects.

Motivational mechanisms are especially important when teachers experience uncertainty or doubt regarding the value of innovations.

7. Using facilitation and collaborative learning approaches.

Modern educational psychology emphasizes the role of facilitative interaction [6] and professional communities. Collaborative problem-solving, peer learning, and joint projects reduce perceived difficulties, increase competence, and promote positive attitudes toward innovation.

3. Conclusions

Overcoming psychological barriers to the perception of innovations in education requires a comprehensive, multi-level approach that integrates the development of individual competence,

emotional resilience, and organizational culture. The implementation of these directions ensures sustainable adaptation of teachers, increases the effectiveness of innovation processes, and contributes to the formation of an educational environment capable of continuous renewal.

References

- [1] Bandura A. Self-efficacy: The exercise of control. New York: W. H. Freeman, 1997.
- [2] Fullan M. The New Meaning of Educational Change. 4th ed. New York: Teachers College Press, 2007.
- [3] Gross J. J. Emotion regulation: Current status and future prospects. *Psychological Inquiry*. 2015. Vol. 26, No. 1. P. 1–26.
- [4] Karasek R. Job demands, job decision latitude, and mental strain. *Administrative Science Quarterly*. 1979. Vol. 24, No. 2. P. 285–308.
- [5] Kahn R. L., Wolfe D. M., Quinn R. P., Snoek J. D., Rosenthal R. A. *Organizational Stress: Studies in Role Conflict and Ambiguity*. New York: Wiley, 1964.
- [6] Rogers E. M. *Diffusion of Innovations*. 5th ed. New York: Free Press, 2003.
- [7] Ryan R. M., Deci E. L. *Self-Determination Theory: Basic Psychological Needs in Motivation, Development, and Wellness*. New York: Guilford Press, 2017.
- [8] Schein E. H. *Organizational Culture and Leadership*. 4th ed. San Francisco: Jossey-Bass, 2010.
- [9] UNESCO. *Educational Technology and Digital Transformation*. Paris: UNESCO Publishing, 2023.

ENERGY MANAGEMENT SYSTEMS USING DIGITAL TECHNOLOGIES

Olga Kravchuk^{1*}, Nataliya Synyuk²

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

**Corresponding author: kravchukoa2@gmail.com, Khmelnitskyi, 29000, Ukraine*

The article discusses current trends in the development of energy management systems, taking into account the introduction of digital technologies. The impact of digital transformation on energy consumption efficiency and energy resource management in enterprises is investigated. The advantages of using the Internet of Things (IoT), Big Data, cloud platforms, and artificial intelligence in the processes of monitoring, analyzing, and forecasting energy consumption are analyzed. A detailed conceptual model of a digital energy management system based on the integration of sensor networks, analytical modules, and decision support systems is proposed.

Keywords: energy management, digitalization, IoT, Big Data, energy efficiency, artificial intelligence.

1. Introduction

In the current conditions of industrial development, the issue of rational use of energy resources is becoming particularly relevant. Energy is one of the key factors in determining the cost of production, competitiveness of enterprises, and environmental safety. In the context of global climate change, rising energy prices, and stricter requirements for reducing greenhouse gas emissions, improving energy efficiency is becoming a priority for economic development. According to modern approaches to sustainable development, energy management is defined as a set of organizational and technical measures aimed at the systematic management of energy consumption processes with a view to their optimization. The basis of effective energy management is the continuous monitoring of energy consumption indicators, data analysis, and informed management decisions to reduce losses and increase the efficiency of energy use.

However, traditional energy management systems based on periodic measurements and manual analysis have a number of limitations. They do not provide timely information, do not take into account the complex interrelationships between technological parameters of production, and often do not allow predicting the behavior of systems in dynamic conditions. These limitations make it impossible to respond quickly to changes in energy consumption and lead to irrational costs [1].

Current trends in the fourth industrial revolution (Industry 4.0) are opening up new opportunities to improve energy management efficiency through digitalization. The use of digital technologies – such as the Internet of Things (IoT), big data, artificial intelligence (AI), digital twins, and cloud services – creates conditions for the transition from traditional to intelligent energy management [2, 3].

The introduction of digital monitoring systems makes it possible to collect large amounts of energy consumption data in real time, analyze it using machine learning algorithms, automatically detect anomalies, and generate recommendations for optimizing energy consumption. This allows companies not only to reduce costs, but also to reduce their carbon footprint and increase environmental responsibility.

In the context of the digital transformation of industry, energy management is becoming not just a control system, but a component of an intelligent production ecosystem integrated with other digital platforms of the enterprise (SCADA, MES, ERP). Such systems enable predictive energy cost management, optimization of technological processes, and strategic decision-making based on data analytics [3–5].

Thus, the relevance of the study is determined by the need to create a new energy management model that combines technical, analytical, and managerial aspects in a single digital environment.

The purpose of the article is to study the role of digital technologies in the development of energy management systems and to substantiate a conceptual model of a digital energy management system (DEM) that ensures increased energy efficiency of industrial enterprises.

2. Results and discussion

Energy management is defined as a systematic process of managing energy resources with the aim of minimizing costs, improving energy efficiency, and reducing environmental impact.

Classic energy management systems are based on ISO 50001 standards, which provide for continuous improvement of energy consumption processes through the Plan–Do–Check–Act (PDCA) cycle. However, traditional methods have limitations in terms of data collection speed, analytical capabilities, and forecasting accuracy.

Digitalization allows for the expansion of energy management functionality by providing: continuous monitoring of energy consumption parameters; automatic data analysis; modeling of optimization scenarios; integration with production management systems (MES, SCADA, ERP).

The proposed conceptual model of a digital energy management system (DEM) provides for the comprehensive integration of hardware, software, and analytical tools to ensure continuous monitoring, analysis, and management of energy consumption. The model consists of five functional levels that interact with each other in a single information and analytical system.

The first level is the data collection level (IoT sensor network), which includes a system of sensors and controllers located on energy consumption objects (equipment, lighting, heating, and ventilation systems). Data on electricity consumption, temperature, pressure, humidity, and load are transmitted in real time to the central node. Wireless protocols (LoRaWAN, ZigBee, MQTT) are used to transmit information.

The second level is the data transmission and storage level, which involves the use of data collection gateways, servers, or cloud platforms to accumulate energy information. The database is implemented using modern technologies (SQL/NoSQL) that allow for the processing of large data sets (Big Data) and ensure the security and backup of information.

The third level is analytical. At this level, the collected data is processed and analysed using artificial intelligence algorithms. Machine learning methods are used to predict peak loads, identify deviations, and build energy consumption models. Recommendations are made to optimise equipment operating modes.

The fourth level is the digital twin level. It involves creating a virtual model of the enterprise's energy system that reflects real processes in digital format. A digital twin allows you to run simulations, test optimisation scenarios without risk to actual production, and predict the consequences of changes in the energy supply system parameters.

Fifth – management and decision-making level: this level is responsible for data visualisation, supporting management decision-making and developing energy efficiency strategies. Information is presented via interactive dashboards, allowing for real-time monitoring of energy consumption and rapid response to deviations.

Thanks to the interaction of these levels, the digital energy management system provides complete transparency of energy consumption, rapid response to inefficient processes, and the ability to forecast energy resource management.

Conclusions. The proposed conceptual model of a digital energy management system allows for comprehensive control of energy consumption in real time. The integration of IoT, Big Data, AI, and digital twins creates the basis for the transition from reactive to proactive energy management. The implementation of such a system will contribute to reducing energy costs, increasing production efficiency, and forming an energy-oriented corporate culture.

References

- [1] Denysiuk S. Energy transition – requirements for qualitative changes in energy development // Energy: Economics, Technology, Ecology. – 2019. – № 1. – P. 7–28.
- [2] Jindal A., Kumar N., Rodrigues J. A heuristic-based smart HVAC energy management scheme for university buildings. IEEE Trans. Industrial Informatics, 2018. DOI: 10.1109/TII.2018.2802454
- [3] Tsantili A., Koronaki I. P., Polydoros V. Maximizing Energy Performance of University Campus Buildings through BIM Software and Multicriteria Optimization Methods. Energies, 16 (5), 2023. 2291 pp. <https://doi.org/10.3390/en16052291>
- [4] Popescu L. L., Popescu R. S. Optimizing Energy Efficiency: Dynamic Numerical Simulation for Educational Buildings. 2024. <https://doi.org/10.1109/eeae60309.2024.10600559>
- [5] Wang Z., Hu G. and Spanos C. J. Distributed model predictive control of bilinear HVAC systems using a convexification method. Proc. of ASCC, Gold Coast, QLD, 2017. 1608–1613 pp.

ORGANIZATIONAL AND PEDAGOGICAL CONDITIONS FOR IMPLEMENTING HEALTH-PRESERVING TECHNOLOGIES IN THE TRAINING OF PHYSICAL EDUCATION TEACHERS

Liudmyla Mikheieva¹, Viktor Vavrashko²

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

**Corresponding author: ludamixeeva@ukr.net, Khmelnitskyi, 29000, Ukraine*

The article analyzes key organizational and pedagogical conditions for implementing health-preserving technologies in the training of future physical education teachers. The focus is on updating educational content, strengthening practice-oriented learning, and integrating innovative methods that support the development of health-preserving competence. The results highlight the

importance of a holistic educational environment that enables future teachers to effectively promote student health and apply modern health-preserving strategies in schools.

Keywords: *health-preserving technologies; physical education teacher training; organizational-pedagogical conditions; practice-oriented learning; professional competence.*

1. Introduction

The preservation and strengthening of students' health in the modern educational process is one of the key socio-pedagogical tasks that determine the effectiveness of school education and the level of physical and mental development of the younger generation. In this context, the professional training of future physical education teachers becomes especially significant, as they serve as direct agents in promoting a healthy lifestyle, advocating for physical activity, and implementing health-preserving technologies in educational practice. The importance of preparing teachers to safeguard students' health aligns with the international concept of Health-Promoting Schools, which emphasizes the integration of educational strategies, health-supportive infrastructure, and high professional competence of educators [1].

The effectiveness of this training depends not only on the content of academic programs but also on the organizational and pedagogical conditions that ensure the systemic integration of knowledge, practical skills, and value-motivational orientations of future teachers. Organizational and pedagogical conditions are considered as a complex of interrelated factors that create a favorable educational environment for the development of health-preserving competence. These conditions include the content structure of academic disciplines with an emphasis on a valeo-logical component, methodological support for practical classes, modelling of real pedagogical situations, integration of interdisciplinary knowledge, as well as the development of active and reflective forms of students' learning activities. The necessity of interdisciplinary integration and practice-oriented learning fully corresponds to the position of international researchers of physical education teacher training, who emphasize the systematic, reflective, and practical nature of teacher preparation [2].

An important aspect is the establishment of inter-institutional cooperation between universities and practice-based settings schools, sports clubs, and health centers which enables students to observe real examples of implementing health-preserving technologies and to take an active role in their realization. Contemporary pedagogical science pays particular attention to innovative approaches that ensure not only the acquisition of theoretical knowledge but also the development of practical skills, critical thinking, professional reflection, and responsibility for student health. Foreign scholars emphasize that a modern physical education teacher must be not only a specialist in physical activity but also a promoter of health-preserving culture, capable of making well-grounded decisions in complex pedagogical situations [3]. These approaches include the use of interactive teaching methods, role-playing, project-based learning, case methods, and digital technologies that simulate real pedagogical situations.

Thus, the analysis of organizational and pedagogical conditions for implementing health-preserving technologies in the professional training of physical education teachers makes it possible to identify key directions for modernizing the educational process, integrating theory and practice, and developing professionally significant competencies. This approach forms the basis for improving the quality of teacher education, developing students' health-preserving culture, and ensuring the effectiveness of educational efforts aimed at preserving and strengthening student health.

2. Results and Discussion

The results of the conducted study indicate that the effective implementation of health-preserving technologies in the professional training of future physical education teachers is possible only under conditions of comprehensive renewal of the content, methodological, and organizational components of the educational process. The analysis of contemporary scientific approaches made it possible to identify the key organizational and pedagogical conditions that ensure the formation of health-preserving competence and enhance the practical readiness of future teachers to create a safe and optimal learning environment.

At the content level, professional training requires the enrichment of educational programs with valeological, physiological, and biomedical knowledge, which forms the foundation for students' understanding of the complex nature of learners' health. The integration of interdisciplinary knowledge enables the consideration of physical education as a system in which pedagogical, psychological, and medical aspects complement each other. This approach corresponds to the requirements of international research emphasizing the need for holistic, cross-sectoral models of teacher preparation [3].

At the methodological level, an important condition is the implementation of innovative teaching forms and methods that ensure active student participation in the learning process and allow for the development of practical skills in simulated or real pedagogical situations. The use of case methods, project-based learning, role-playing, pedagogical modelling, and digital technologies promotes the development of critical thinking, professional reflection, and responsible decision-making skills related to safeguarding learners' health. The application of lesson video analysis, specialized digital platforms, and mobile applications strengthens the practice-oriented nature of training and brings the educational process closer to the real conditions of school work.

A particularly significant element in the development of professional readiness is high-quality practical training. The presence of a network of partner institutions – schools, sports clubs, and wellness centers – creates conditions for students' immersion in real educational environments where they can observe, analyze, and apply health-preserving technologies. Practical workshops, master classes, and participation in professional trials deepen students' professional experience, while modelling critical pedagogical situations associated with health risks enhances their ability to respond promptly and act responsibly.

Equally important is the development of students' motivational and value-based attitudes toward health preservation. Creating a supportive educational environment within higher education institutions, involving students in sports and wellness activities, and organizing awareness-raising events and communication-training programs contribute to the recognition of a healthy lifestyle as both a personal and professional value. Such an atmosphere of support and personal growth strengthens professional motivation and increases future teachers' sense of responsibility for learners' health.

An essential area for improvement is the system for assessing the formation of health-preserving competence. Competence-based assessment, which includes the analysis of practical skills, observable changes in pedagogical behavior, and the ability to apply health-preserving technologies in specific situations, allows for a more objective evaluation of students' readiness for professional activity. Clear assessment criteria – covering skills in organizing a safe lesson, adapting physical loads to learners' individual needs, monitoring physical condition, and preventing injury risks – ensure the systematic and transparent functioning of the educational process.

The synthesis of the obtained results demonstrates that the effective development of future physical education teachers' readiness to implement health-preserving technologies is possible only under conditions of holistic modernization of the educational process. The set of organizational and pedagogical conditions – from content enhancement to the improvement of practical and reflective components – ensures not only students' professional competence but also contributes to the formation of their health-preserving culture as an integral component of professional identity.

3. Conclusions

The organizational and pedagogical conditions for implementing health-preserving technologies in the professional training of future physical education teachers constitute a key factor in shaping their professional competence aimed at strengthening the health of learners. The analysis of theoretical developments and practical aspects indicates that the effectiveness of this process is determined by the ability of higher education institutions to create a holistic educational environment that integrates modern pedagogical approaches, scientifically grounded methods, and innovative technologies for health-enhancing activities.

An important condition is the renewal of the content of professional training in accordance with contemporary trends in health preservation, including the incorporation of disciplines focused on disease prevention, the promotion of a healthy lifestyle, and the development of competencies related to the safe organization of the educational process. Equally significant is ensuring a practical orientation of training, which involves the active use of training modules, workshops, project-based learning, modelling of pedagogical situations, and the implementation of innovative technologies such as fitness pedagogy, functional training, and digital tools for monitoring physical condition.

The findings underscore that the preparation of future physical education teachers requires the creation of a supportive educational environment that involves interdisciplinary collaboration, the cultivation of a health-preserving culture within student groups, and the development of motivation for personal and professional self-improvement. It is also essential to provide an adequate material and technical base, apply modern sports and health-enhancing resources, utilize information technologies, and ensure appropriate methodological support.

Thus, the integration of health-preserving technologies into the practice of professional training for physical education teachers is a complex process that requires a systematic approach, innovative thinking, appropriate management policies, and methodological guidance. The implementation of the identified organizational and pedagogical conditions will contribute to the formation of a competent, professionally mature specialist capable of effectively fostering the health-enhancing potential of modern schools and promoting a culture of health among students throughout their lives.

References

- [1] WHO. UNESCO. World Health Organization and the United Nations Educational, Scientific and Cultural Organization; Geneva: 2021. Making every school a health-promoting school: implementation guidance. <https://www.who.int/publications/i/item/9789240025073>
- [2] Pühse, U., & Gerber, M.: International comparison of physical education. Concepts, problems, prospects. Meyer & Meyer Sport, 2005.
- [3] Armour, K.: *Pedagogical Cases in Physical Education and Youth Sport*. Routledge, 2014.

INNOVATIVE APPROACHES IN THE PROFESSIONAL TRAINING OF PSYCHOLOGISTS FOR BULLYING PREVENTION IN SCHOOLS

Liudmyla Mikheieva¹, Serhiy Chornyi²

^{1,2}*Khmelnitskyi National University, Khmelnitskyi, Ukraine*

**Corresponding author: ludamixeeva@ukr.net, Khmelnitskyi, 29000, Ukraine*

The theses explore innovative approaches to preparing future psychologists for bullying prevention in general secondary schools. Emphasis is placed on integrating theoretical knowledge, practical skills, and collaboration with school staff and parents to ensure a safe educational environment. Proposed methods include specialized courses, trainings, simulations, restorative practices, and mediation. The importance of developing conflict-resolution and communication skills for effective responses to student violence is highlighted.

Keywords: future psychologists, bullying, anti-bullying strategies, professional training, bullying prevention.

1. Introduction

Bullying in the school environment remains one of the most pressing socio-psychological issues, with significant consequences for children's mental health and their further development [1]. According to the National Academy of Educational Sciences of Ukraine, effective bullying

prevention requires diagnostics and interventions that align with modern scientific approaches and take into account the dynamics of the educational environment. In this context, innovative approaches in preparing future psychologists gain particular importance, as they open new pathways for preventing, identifying, and effectively responding to incidents of bullying.

Innovations in psychologist training encompass both methodological and technological components. One such practice is the restorative approach and school mediation, which not only resolve conflicts but also restore relationships between participants of bullying situations. This approach fosters a culture of peace and responsibility, replacing traditional punitive response models.

In addition, methods of social learning particularly social skills training are becoming an essential part of psychologist preparation. For example, the Skillstreaming concept provides specialists with tools for developing children's empathy, constructive communication, and self-regulation skills, all of which are critically important for preventing aggressive behaviour and bullying.

Another promising direction of innovation is the use of technologies for detecting and monitoring bullying. Methodological guidelines for schools emphasize the importance of systematic diagnostics through surveys, observations, and questionnaires training for psychologists must therefore ensure proficiency in using these tools [2].

Furthermore, normative and methodological documents, including the official algorithm for responding to bullying approved by the Ministry of Education and Science of Ukraine, stipulate that school psychologists must participate in preventive programs, inform parents and teachers, and conduct educational and awareness-raising activities.

Innovative approaches also include the implementation of training programs for psychologists preparing to work in school settings. These programs aim to develop skills in identifying bullying, fostering empathy, and establishing effective internal school communication.

Thus, modern preparation of psychologists for bullying prevention must be rethought through the adoption of advanced methods and technologies. Integrating restorative practices, mediation, social-communication training, and diagnostic tools into training programs contributes to forming specialists capable of acting effectively in real school contexts, creating a safe and supportive environment for all students.

2. Results and Discussion

One of the key directions in preparing future psychologists is the integration of theoretical, practical, and partnership-based components, which ensures the development of comprehensive competence in bullying prevention. This approach allows future specialists to simultaneously acquire knowledge of the socio-psychological mechanisms of violence, develop practical skills for working in conflict situations, and cultivate the ability to interact effectively with teachers and parents.

For instance, the modernization of educational programs by including specialized courses on bullying enables students to understand the complexity of this phenomenon from socio-psychological processes to legal aspects. It is recommended that curricula cover topics related to bullying diagnostics, preventive approaches, mediation, and restorative practices. This approach allows future psychologists to analyze the educational environment from a safety perspective, assess risks, and model effective interventions.

A central element of the model is the implementation of practical trainings, simulations, and role-playing games that replicate real school conflicts [3]. It is advisable to incorporate restorative practices in which the psychologist acts as a facilitator or mediator in meetings involving victims, aggressors, and neutral parties. Organizing practice in real school settings with the participation of administration, teachers, and parents for the development of local action plans, information campaigns, and mediation sessions is recommended. Such experience allows students to gain professional confidence and effectively apply their acquired knowledge in practice.

An effective strategy is the creation of school working groups that include psychologists, teachers, and parent representatives, who jointly develop bullying response policies, action algorithms, and preventive plans. A key proposal is the implementation of restorative session

programs involving all stakeholders, which promotes reconciliation, restores trust, and minimizes repeated incidents [4]. The use of mediation, supported by the recommendations of the Ministry of Education and Science of Ukraine and UNICEF, helps create a safe and constructive educational environment.

Among the proposals for improving the model are adapting formats for parental involvement in preventive work (evening sessions, online meetings), regular trainings for teachers, and ensuring sustained coordination among all participants in the educational process. It is recommended to develop mechanisms for regular monitoring and evaluation of the effectiveness of implemented activities, which will allow timely adjustments to programs and maintain a high level of professional competence among students.

3. Conclusions

The analysis of contemporary approaches to preparing future psychologists indicates that integrating theoretical knowledge with practical bullying prevention tools is a key factor in enhancing the effectiveness of school-based preventive work. The implementation of innovative methods, such as interactive learning, simulation exercises, mediation trainings, and restorative practices, enables students to develop a comprehensive set of professional skills and competencies necessary for timely identification, prevention, and resolution of bullying incidents among students.

The adoption of these approaches contributes to the development of conflict-resolution competence in future psychologists, enhancing their ability for empathy, effective communication, and constructive conflict management. Establishing partnership-based collaboration with teachers, parents, and school administration ensures a systematic approach to bullying prevention, creating a safe and tolerant educational environment.

Another important aspect is the cultivation of an ethical and value-based stance among students, ensuring adherence to professional standards, fostering trust, and promoting effective interaction with all participants in the educational process. Innovative training technologies allow students not only to acquire practical skills but also to develop critical thinking and the ability to adapt to a dynamic educational environment.

Thus, the proposed innovative approaches to professional training of future psychologists are technologically justified, effective, and promising. They provide a foundation for improving the quality of psychological support in schools, ensure a systematic approach to bullying prevention, and contribute to creating a safe, supportive, and inclusive educational environment. Further research should focus on assessing the long-term impact of these approaches on bullying rates in schools, refining curricula, and integrating modern digital technologies for monitoring and analyzing the socio-psychological climate of the educational environment.

References

- [1] Boichuk P. M., Kozihora M. A., Romaniuk A. M.: Bulinh yak sotsialno-psykholohichne yavyshche u suchasnomu osvitnomu prostori. Akademichni studii. Seria «Pedahohika», 2 (3). 2021. S. 10–16.
- [2] Ministerstvo osvity i nauky Ukrainy. Korysni posylannia shchodo temy antybulingu. URL: <https://mon.gov.ua/osvita-2/zagalna-serednya-osvita/protidiya-bulingu/korisni-posilannya-shchodo-temi-antibulingu>
- [3] Andrieienkova V. L., Baidyk V. V., Voitsiakh T. V. ta in.: Vprovalzhennia vidnovnoho pidkhodu, poserednytstva, mediatii ta praktyky funktsionuvannia sluzhb porozuminnia v zakladakh osvity. Kyiv : TOV «Ahenstvo «Ukraina»», 2023. 186 s.
- [4] Udoenko Yu. M., Hladyshko Ye. V.: Zmist ta napriamy antybulinhovoi polityky u shkoli. Psykholohichnyi chasopys, 7 (4). 2021. S. 18–27.

ЦІННІСНІ ВИМПРИ ЕКОЛОГІЧНОЇ КРИЗИ В УМОВАХ ВІЙНИ

Наталія Петruk

Хмельницький національний університет

Nataliia.petruk@gmail.com Хмельницький, 29016, Україна

The paper examines the value dimensions of the ecological crisis during wartime, focusing on ethical and moral responsibility in addressing environmental destruction caused by war. It emphasizes universal human values, the need for cultural humanization, and global cooperation to mitigate ecological threats and preserve life and nature.

Keywords: ecological crisis, war, ethics, human values, responsibility, environmental destruction, sustainability, global challenges, moral principles, culture.

1. Вступ

Про екологічну кризу в сучасному світі доцільно говорити у зв'язку з небезпеками, які загрожують існуванню людини і життю на Землі в глобальному масштабі, а також з огляду на ті жахливі наслідки для всього живого, які принесла війна, розв'язана проти України російським агресором. Екологічні загрози війни в Україні, злочини проти людини та природи повинні бути розглянуті й оцінені людським товариством з позицій права та відповідальності перед законом. Водночас в умовах війни важливою для розуміння екологічної кризи як вияву кризи людства є її ціннісна, етична оцінка, а також спроба обґрунтування тих морально-етичних норм, які виступають передумовою збереження людини і природи. Філософського осмислення потребує також питання про гуманізацію культури в добу технократизму та глобалізації, про значення вироблення орієнтації на загальнолюдські цінності в умовах загострення глобальних проблем.

Війна за своєю суттю є антивітальним і антиприродним явищем. Від неї страждають люди, руйнуються екосистеми, потерпають «німі жертви війни» – природа, тварини і всі живі істоти. Війна посилює деструкцію щодо природи й життя в планетарному масштабі, загострюючи екологічні проблеми. Агресивне, варварське уявлення про світ протистоїть зусиллям розумної людини і цивілізованої частини людства в прагненнях зберегти себе і світ, свій дім і природу як умови життя. Спричинені російською агресією злочини проти життя, проти людей і тварин є ще одним свідченням необхідності усвідомлення важливості дотримання людиною моральних принципів і норм та визнання загальнолюдських цінностей.

Сучасний світ породжує низку проблем, які руйнують підвалини існування людської спільноти, людський спосіб життя. Вирішити їх людство може, керуючись у своїй діяльності гуманістичною свідомістю та моральними принципами. Екологічна криза як вияв глобальної кризи в цілому має ціннісні витоки, тому апеляція до універсальної свідомості та етичних норм, до визнання значення загальнолюдських цінностей і культурно-історичного універсалізму як факторів глобального розвитку набуває важливого значення. Глобальна екологічна криза на наших очах з пессимістичного прогнозу перетворюється в реальність. Бездумне втручання в природу, прагнення змінити природний світ відповідно до тих чи інших людських цілей, екологічні катастрофи, руйнування навколошнього середовища, війна, боротьба за природні ресурси має своїм наслідком те, що людина повинна думати, як пережити екологічну кризу, як пом'якшити дію негативних для життя факторів, як пригальмувати реалізацію техногенних і культурних наслідків, що загрожують життю. Тому важливою є оцінка такої кризової ситуації й пошук шляхів виходу з неї. У світлі викликів та загроз, які мають глобальний характер, зростає відповідальність самої людини за своє життя, за співіснування людини і природи.

2. Результати і обговорення

В тих умовах, в яких сьогодні перебуває світ і Україна, людина повинна діяти не тільки цілеракціонально, прагматично, але й морально, проявляючи моральну співвідповідальність у колективних діях. В різних виявах життя моральність постає як норма людської діяльності.

Викликана екологічною кризою необхідність обґрунтування універсальної відповідальності чи співвідповідальності постає як можливість уникнення її небезпечних виявів. У зв'язку з цим необхідною є ефективна координація співвідповідальних дій з діяльністю різних корпорацій, організацій та суспільних інституцій, включаючи таку інституцію, як правова держава.

Дотримання принципу співвідповідальності може розглядатися як спосіб об'єднання зусиль всіх членів суспільства для подолання кризових ситуацій у випадках збереження культурних форм в єдності з природним світом. Зрозуміло, що всім виявам людського й культурного життя технічна цивілізація загрожує не менше, ніж природному світові. Незважаючи на те, що в світі існують різні культурні системи, де домінують різні системи цінностей, проявляється різне ставлення до природи, люди між собою повинні дійти згоди. З огляду на екологічну кризу це означає забезпечення рівних прав і рівної співвідповідальності різноманітних суспільств перед життям у планетарному масштабі.

Універсальна етика відповідальності постає викликом екологічній кризі, антитезою страшним проявам екологічних бід в умовах війни, яку ми переживаємо. Вона стає нагальною вимогою до людської діяльності. В час, коли йде війна, все повинно визначатися імперативом цінності життя – чи то йдеться про цінність людського життя, чи про свідоме й толерантне ставлення до тварин, до довкілля загалом. Отже, людина повинна здійснювати дії, спрямовані на пом'якшення (а в ідеалі й усунення) руйнівного, катастрофічного впливу на природу. Ці дії повинні супроводжуватися усвідомленням цінності життя як такого.

Такими є вимоги «нової етики» щодо низки криз, викликаних людиною, людською діяльністю та різними формами агресії, найстрашнішою з яких є військова. Природа повинна сприйматися як дім, в якому можливе життя у всіх проявах, а не як аrena жорстокої й сліпої боротьби за виживання.

Нагальною є також необхідність ціннісної переорієнтації людини в умовах загострення глобальних криз. Причиною екологічних бід у сучасному світі є те, що людство допускало і продовжує допускати помилки у своєму ставленні до природи. Помилковими виявляються також й орієнтири, на які спрямована людина. Наслідком цього є не лише шкода, яка наноситься природі, а й шкода, яка наноситься людській сутності. Загроза екологічної кризи має глобальний характер і породжена не історичними особливостями розвитку того чи іншого регіону, а деякими суттєвими помилками людства у виборі системи цінностей і ціннісних орієнтирів. Йдеться, зрештою, про відхід людини від загальнолюдських цінностей, що надзвичайно небезпечно в ситуації війни. Дотримання загальнолюдських цінностей – це той шлях, який необхідний для сучасного світу, для виходу суспільства зі стану криз. Загальнолюдські цінності не конструюються штучно, вони є частиною культури, а орієнтація людства на них передбачає можливість збереження повноцінного існування кожної людини в цьому світі.

Для того щоб розуміти, що відбувається з людьми, світом і культурою, що спричиняє глобальну екологічну кризу в сьогоднішніх реаліях, потрібно повною мірою усвідомлювати небезпеку втручання людини в природний світ. Через зміну ставлення людини до природи закладаються основи сучасної культури. Вона постає вже не просто як «спосіб жити», а як «спосіб вижити». Її ознакою є формування основ нового типу мислення, поступова відмова від необмеженого активізму, експлуататорського ставлення до природи, від деміургічних настанов, які склалися в європейській культурі на основі переконання в необмежених можливостях розуму, науки, могутності людини. Настанова на перетворення природи все більше змінюється настановою на її збереження та оберігання від наслідків нерозумних дій людини.

Світ у наші дні дуже складний, щоб з позицій якої-небудь однієї культури, системи цінностей чи ідеології можна було його адекватно зрозуміти чи описати. Не можна абстрагуватися від всієї різноманітності соціально-історичних традицій, які впливають на пошук шляхів вирішення глобальних проблем, подолання екологічної кризи. Як показує історія, ігнорування специфіки суспільного розвитку, духовних і моральних основ життя людини, цінностей, культурних традицій тощо приводить в кінцевому рахунку до руйнування програми співжиття людини і природи.

МЕНЕДЖМЕНТ ОХОРОННИХ ЕКОСИСТЕМ ЯК СКЛАДОВА ДЛЯ РЕАЛІЗАЦІЇ ЦЛЕЙ СТАЛОГО РОЗВИТКУ

Олександр Мудрак¹, Юрій Антонюк²

¹Вінницька академія безперервної освіти

²Інститут агроекології і природокористування

Corresponding author: ov_mudrak@ukr.net, Vinnytsia, 21050, Ukraine

This article highlights the importance of management of protected ecosystems as a way to achieve sustainable development goals (Global Goals) in Ukraine, in particular in Vinnytsia region. The prerequisites for management, features of ecosystem management, management of the recreational and educational component of nature conservation sites are determined. Considered the management of natural ecosystems within the National Nature Park "Karmelyukove Podillia".

Keywords: protected areas, management, conservation, biodiversity.

1. Вступ

В умовах глобального антропогенного тиску виникають ситуації, в яких загострюється необхідність екстренного втручання в екосистеми, щоб запобігти їх деградації. Як реакція-відповідь – це стабілізація екотопічної ситуації.

Біорізноманіття екосистем є незамінною складовою екологічного балансу, тому виникає потреба застосовувати нові методи і практики для зменшення рівня антропогенного навантаження на природні екосистеми.

Станом на 01.01.2024 р., в Вінницькій області нараховується 433 об'єкти природно-заповідного фонду загальною площею 66741,1437 га, що складає 2,2698 % від площин області. Okрім того, в області нараховується 11 об'єктів Смарагдової мережі, утворених відповідно до вимог про охорону дикої флори та фауни і природних середовищ існування в Європі. В порівнянні із загальноєвропейськими показниками, рівень заповідності знаходиться на достатньо низькому рівні [1, 2].

Одним із стратегічних напрямів збереження екосистемного різноманіття в Україні є менеджмент охоронних екосистем – система стратегічних і практичних заходів, спрямованих на збереження природних комплексів у межах заповідних територій (НПП, біосферних резерватів, заказників, заповідників). Дана система забезпечує підтримання природної рівноваги, збереження біорізноманіття, ландшафтної різноманітності та екосистемних послуг, які є фундаментом для соціального та економічного благополуччя суспільства [3].

2. Результати і обговорення

Природні заповідні території та об'єкти, як найефективніший механізм збереження біорізноманіття та послуг екосистем, відіграють важливу роль у реалізації національної екологічної політики. Вони також слугують полігонами для проведення наукових досліджень, забезпечення якості довкілля, освіти, розвитку туризму та рекреації, охорони природних і культурних об'єктів, управління природними ресурсами тощо [4].

Законодавчо-правовими підставами збереження і менеджменту охоронних екосистем є Закон України (ЗУ) «Про охорону навколошнього природного середовища», де природні території та об'єкти, які підлягають особливій охороні, утворюють єдину територіальну систему і включають території та об'єкти природно-заповідного фонду, курортні та лікувально-оздоровчі, рекреаційні, водозахисні, полезахисні та інші типи територій та об'єктів, що визначаються законодавством України. Засоби менеджменту охоронних територій включають законодавчі, економічні та організаційні інструменти, що забезпечують їх охорону, збереження природного різноманіття та стало використання [5].

Розумний менеджмент заповідних територій сприяє відновленню та примноженню їхнього біорізноманіття та продуктивності шляхом:

- швидкого проходження сукцесійного ряду;
- доповнення екологічної ніші при неможливості впровадження природної складової;
- створення нових біотопів та біоценозів;
- регулювання інвазійних та інших небажаних агресивних видів [6].

Менеджмент охоронних екосистем є особливо актуальним у випадку, коли екосистеми втратили здатність до саморегуляції і самовідновлення, керування ними ускладнене внаслідок відсутності детальної інформації про екотопічні, трофічні, консортивні, міжпопуляційні, інші біоценотичні зв'язки. Керування екосистемами потребує знань про компоненти біоценозу, на основі яких виробляється комплексний підхід, а висновки мають подаватися узгоджено фахівцями різного напрямку [3].

Менеджмент у межах охоронних екосистем спрямований не лише на їх збереження, а й на забезпечення конструктивної взаємодії між природою та суспільством. Одними з важливих його складових є управління рекреаційним потенціалом та розвиток екологічної освіти, які формують цілісну систему підтримки сталого розвитку.

Об'єкти природо-заповідного фонду мають високий культурний і рекреаційний потенціал за рахунок ландшафтного і біотичного різноманіття, унікальності біотопів, природних умов для оздоровлення та освітнього розвитку, тому в даному контексті менеджмент охоронних екосистем створює умови для:

- збалансованого використання рекреаційних ресурсів (для запобігання деструктивного впливу і деградації);
- здійснення планування екологічних маршрутів і стежок для мінімального впливу на природні компоненти;
- зонування і регулювання маршрутів для контролю потоків відвідувачів;
- заходів екологічної просвіти щодо проблематики і ролі природоохоронних територій в збереженні цінних природних комплексів, формування екологічної свідомості;
- розвитку екологічного туризму як засобу гармонізації відносин між суспільством та навколошнім середовищем.

Ефективне управління охоронними екосистемами в контексті виконання цілей сталого розвитку (СР) [7] забезпечує:

- охорону водно-болотних комплексів, джерел прісної води, регулювання стоку та водного балансу (6, 14 ціль СР);
- збереження природного середовища існування рідкісних видів (14, 15 ціль СР)
- розвиток відповідального природокористування на прилеглих територіях та формування екологічної свідомості суспільства (12 ціль СР);
- зменшення впливу кліматичних змін через управління лісами, болотами, степовими екосистемами (13 ціль СР)
- охорону видового і ландшафтного різноманіття, відновлення природних середовищ суходолу (15 ціль СР);
- заличення місцевих громад та стейкхолдерів до етапів прийняття рішень 16, 17 ціль СР).

Осередком збереження, відтворення і раціонального використання біотичного і ландшафтного різноманіття Східного Поділля (Вінницької області) є Національний природний парк «Кармелюкове Поділля» створений відповідно до Указу Президента України від 16.12.2009 № 1057 «Про створення національного природного парку «Кармелюкове Поділля» [8].

Менеджмент природних екосистем в межах національного природного парку (НПП) «Кармелюкове Поділля» забезпечить збереження і відтворення біотичного і ландшафтного різноманіття та сприятиме:

- дотриманню екологічної рівноваги;
- сприятиме створенню більш екологічно безпечних і сприятливих умов для життя і розвитку людини в регіоні;

- запобіганню безповоротній втраті частини гено-, ценофонду, екосистем і ландшафтів Гайсинського району Вінницької області як центральної частини України;
- забезпеченням збалансованого природокористування;
- розвитку ресурсної і рекреаційної бази для екотуризму, відпочинку та оздоровлення населення;
- ренатуралізації земельних угідь, що вилучаються із сільськогосподарського використання;
- посиленню узгодженості діяльності органів виконавчої влади, місцевого самоврядування, громадських організацій природоохоронного спрямування у вирішенні частини екологічних проблем.

Висновок. Отже, менеджмент охоронних екосистем – це шлях до збереження унікальних природних комплексів, збереження біорізноманіття не лише на місцевому і регіональному, але й на глобальному рівнях та внесок у процеси сталого розвитку. Менеджмент сприяє довготривалій стабільноті, підтримці екологічної рівноваги та створює основу для гармонійної взаємодії між природою й суспільством.

Список використаних джерел

- [1] Екологічний паспорт Вінницької області за 2024 рік. Вінниця : Вінницька ОВА. 2024. 157 с.
- [2] Закон України «Про природно-заповідний фонд». URL: <https://zakon.rada.gov.ua/laws/show/2456-12#Text>
- [3] Мудрак О. В., Мудрак Г. В. (2020) . Заповідна справа : навч. посіб. для студентів галузі знань 10 «Природничі науки». Херсон : ОЛДІ-ПЛЮС. 640 с.
- [4] Соловій І. П., Бурда Ю. А. (2022). Методологічні особливості оцінювання послуг лісових екосистем у межах природно-заповідних територій. *Науковий вісник НЛТУ України*, 32, № 3, 37–42.
- [5] Закон України «Про охорону навколошнього природного середовища». URL: <https://zakon.rada.gov.ua/laws/show/1264-12#Text>
- [6] Іваненко І. Б., Іваненко Є. І. (2023). Менеджмент територій природно-заповідного фонду України без спеціальної адміністрації (на прикладі ландшафтного заказника загальнодержавного значення «Козинський»). *Укр. геогр. журн.*, № 4, 17–25. DOI: <https://doi.org/10.15407/ugz2023.04.017>
- [7] UNDPУкраїна: Глобальні цілі сталого розвитку. URL: <https://www.undp.org/uk/ukraine/tsili-staloho-rozvytku>
- [8] Положення про Національний природний парк «Кармелюкове Поділля» (нова редакція). Затверджено : наказ Міністерства захисту довкілля та природних ресурсів України від 31.08.2020 № 73 (у ред. наказу Міндовкілля 15 квітня 2021 року № 245).

СОЦІАЛЬНА ЗНАЧУЩІСТЬ ЦИФРОВИХ РЕКОНСТРУКЦІЙ ОДЯГУ ЯК ІНСТРУМЕНТ ЗБЕРЕЖЕННЯ ТА ПОПУЛЯРИЗАЦІЇ КУЛЬТУРНОЇ СПАДШИНИ

Alona Diakova

Khmelnitskyi National University, Khmelnitskyi, Ukraine
Corresponding author: alonadiakovatksv@khnmu.edu.ua

Digital reconstructions of historical clothing provide inclusive access to cultural heritage, reduce the need for physical resources, support sustainable practices, and shape new formats of interaction through VR/AR. They enhance education, cultural identity, and social engagement.

Keywords: digital reconstructions, historical clothing, VR/AR, cultural heritage, social significance.

1. Вступ

Цифрові реконструкції історичного одягу набувають уваги в сучасному культурному просторі, де пріоритетом стає збереження та відповідальне використання ресурсів. У міжнародній практиці саме цифрові технології дозволяють зберегти об'єкти, які є занадто крихкими або ризикованими для демонстрації, забезпечивши водночас їхнє безпечне вивчення.

Створення 3D-моделей історичного вбрання усуває потребу в контакті з оригінальними текстильними артефактами, що подовжує їхній фізичний життєвий цикл і скорочує витрати на реставраційні втручання. Це важливо для музейних фондів, де велика частина предметів зберігається через нестачу площ або через високу чутливість до світла, вологи та механічного впливу [1].

У контексті сталого розвитку цифрові реконструкції підтримують екологічну відповідальність. Створення віртуальних копій потребує мінімальних фізичних ресурсів, а процес цифрового моделювання замінює енерговитратні та матеріаломісткі методи відтворення одягу, які передбачають виготовлення макетів, пошук аналогів тканин та численні зразки. Використання 3D-технологій дозволяє відмовитися від цих етапів, не втрачаючи точності відтворення конструкції та декоративних елементів. Це особливо цінно у випадках, коли первинні матеріали більше не виробляються або є екологічно шкідливими.

Цифровізація культурної спадщини також поглиблює освітній та соціальний потенціал історичного костюма. Онлайн-експозиції, VR-моделі та інтерактивні каталоги роблять доступним те, що раніше можна було побачити лише у спеціалізованих фондах. Це сприяє формуванню культурної обізнаності, включенням ширших аудиторій та розвитку міждисциплінарних досліджень. Крім того, цифрові реконструкції усувають бар'єри для людей з обмеженим доступом до музеїв – географічних, фізичних чи соціальних.

Новітні технології формують сприяють на цифрові реконструкції історичного одягу, що перетворюються на стратегічний інструмент збереження культурної пам'яті. Вони забезпечують екологічну сталість, підтримують інтелектуальний розвиток суспільства й формують нові моделі взаємодії зі спадщиною, де збереження, доступність і відповідальне ставлення до ресурсів поєднуються в єдиному технологічному рішенні [2].

2. Результати та обговорення

2.1. Соціальна роль цифрових реконструкцій

Доступність культурної спадщини для широких аудиторій, включно з людьми з обмеженою мобільністю. Цифрові реконструкції (3D-моделі, онлайн-експозиції, VR/AR-тури) кардинально знижують бар'єри доступу: вони дозволяють відвідувачам переглядати деталі артефактів дистанційно, у збільшенному масштабі або у форматі, адаптованому під потреби користувача (озвучка, субтитри, управління клавіатурою, спрощений інтерфейс). Такі рішення ефективні для людей з обмеженою мобільністю, слабким зором або сенсорними порушеннями, оскільки усувають фізичну необхідність присутності у виставковому просторі й дають змогу налаштувати спосіб сприйняття (наприклад, тактильна відтворювальна інформація або аудіоописи). Цифрові експозиції підвищують охоплення аудиторії й підсилюють залучення аудиторій з інвалідністю, особливо якщо під час розробки застосовується співпроектування з представниками цільових груп [3, 4].

Формування нового формату взаємодії суспільства з історичним одягом через VR/AR. Віртуальна реальність створює інтерактивну, багатовимірну форму взаємодії: користувачі не лише дивляться експонат, а й входять у реконструйований одяг взаємодіючи з ним, або ж спостерігають процес виготовлення чи способи носіння одягу в його історичному контексті. Останні роки фіксують швидке зростання застосувань VR/AR та їхній позитивний вплив на залучення у навчання й запам'ятовування інформації; при цьому практична цінність посилюється, коли VR/AR інтегрують з метаданими, науковими описами та реконструкціями технік [5].

Підсилення національної ідентичності через наочні цифрові моделі традиційного вбрання. Цифрові реконструкції традиційного одягу діють як візуальні носії символіки,

фасонів, технік оздоблення і локальних практик – тобто унікальних маркерів культурної ідентичності. Відтворені в 3D-середовищі артефакти одягу продовжують життя матеріалу, культури і дозволяють сучасній формі, придатній для навчання, популяризації та креативних проектів. Цифрові моделі одягу підтримують економічну складову швейної/фешн-індустрії, створюючи видимість на національному й міжнародному рівні [2].

2.2. Екологічна сталість та ресурсозбереження

Зменшення потреби у фізичному виготовленні зразків історичного костяному. Цифрова реконструкція (3D-моделювання, VR/AR) дозволяє створювати віртуальні копії історичного одягу, які можуть слугувати для досліджень, демонстрацій, освітніх та виставкових потреб без необхідності виготовляти фізичної реплікі.

Цифрові зразки провокують відсутність потреби у тканинах, нитках, матеріалах для декору, в хімічних засобах для обробки тканини тощо – що зменшує матеріальні та енергетичні витрати. Це відповідає концепції ресурсозбереження: зменшується споживання матеріалів і знижується екологічний вплив, пов’язаний з виробництвом нових фізичних об’єктів [6].

Оцифровані 3D-моделі можна передавати та демонструвати онлайн, замінюючи фізичне переміщення віднайдення між виставками або музеями. Це зменшує потребу у транспортуванні важких або ділікатних об’єктів, що знижує викиди CO₂ та ризики пошкодження або деградації оригіналів під час перевезень. Саме такий підхід сприяє екологічній сталій практиці, особливо при міжнародних.

2.3. Освітній потенціал цифрових реконструкцій

Цифрові моделі історичного одягу розширяють навчальні можливості у закладах формальної освіти (університети, художні академії, коледжі), а також у неформальному середовищі (онлайн-курси, музейні освітні програми, відкриті лекції, виставки). Для студентів fashion-спеціальностей 3D-моделі виробу (одягу) виступають інструментом детального вивчення конструкції, силуетів, крою та технік оздоблення без ризику пошкодити автентичні артефакти. Вони дозволяють аналізувати форму у тривимірному просторі, проводити віртуальні примірки, порівнювати різні історичні епохи або реконструювати втрачені елементи. Для істориків і культурологів цифрові реконструкції стають засобом дослідження контекстів виробництва й використання одягу, допомагають працювати з деталізацією, недоступною при перегляді експонату «крізь вітрину». У неформальній освіті такі моделі забезпечують відкритий доступ до знань, дозволяючи викладачам і лекторам включати інтерактивний матеріал до програм, що робить навчання гнучкішим, візуальнішим і технологічно сучасним.

VR/AR-технології роблять взаємодію з історичним одягом більш динамічною, доступною та емоційно залишаючи. Гейміфікаційні механіки – такі як інтерактивні завдання, квести, VR-тури, можливість самостійно «зібрати» костюм або приміряти його у віртуальному середовищі – значно підсилюють інтерес молодої аудиторії. Цей формат сприяє формуванню емоційного зв’язку з культурною спадщиною, робить процес пізнання більш сучасним та відповідним цифровим звичкам сучасного покоління. Це також сприяє створенню нових платформ популяризації – через соціальні мережі, ігрові платформи, інтерактивні освітні проекти, де цифрові моделі працюють як інструмент візуальної комунікації та культурного діалогу. Цифрові реконструкції одягу можуть демонструватися у міжнародних онлайн-музеях, VR-фестивалях та дослідницьких базах, створюючи культурний діалог між країнами. Високоякісні цифрові моделі традиційного одягу роблять культурну спадщину відомою та привабливою для світової аудиторії.

Висновки: цифрові реконструкції одягу мають соціальну цінність, оскільки роблять культурну спадщину доступною для широких аудиторій, включно з людьми, які не можуть відвідати музеї фізично. Вони усувають бар’єри мобільності, географічної віддаленості та соціальних обмежень, забезпечуючи рівний доступ до знань. Завдяки VR/AR-технологіям формується новий тип взаємодії з історичним віднайденням, що підсилює зачленення, розуміння

та емоційний зв'язок із культурою. Цифрові моделі створюють умови для сучасної освіти, дозволяючи студентам і дослідникам вивчати костюм детально та без ризику для автентичних об'єктів.

Список використаних джерел

- [1] Біла книга: культурна спадщина та цифрові технології. URL: <https://reherit.org.ua/wp-content/uploads/2021/11/Bila-knyga-3-Kulturna-spadshyna-ta-tsyfrovi-tehnologii-.pdf>
- [2] Rudolf A. Using Digital Technology for the Sustainable Preservation of Clothing Heritage: A Virtual Reconstruction of the 1848/49 Uniform / A Rudolf, Pučko B, Hren Brvar M, Remic K // Sustainability. – 2024. – 16(17). – 7757. <https://doi.org/10.3390/su16177757>
- [3] Kruczak Z., Gmyrek K., Zižka D., Korbiel K., Nowak K.: Accessibility of cultural heritage sites for people with disabilities: A Case Study on Krakow Museums. Sustainability, Vol. 16, 1 2023/ <https://doi.org/10.20944/preprints202311.1006.v1>
- [4] Islek D. The Future of accessible museums: qualitative analysis on educational practices. Revista Românească pentru Educație Multidimensională Vol. 15/1 pp. 83–106. 2023. <https://doi.org/10.18662/rrem/15.1/687>
- [5] Acke L., Corradi D., Verlinden J. Comprehensive educational framework on the application of 3D technologies for the restoration of cultural heritage objects. Journal of Cultural Heritage. Vol. 66. pp. 613–627. 2024. <https://doi.org/10.1016/j.culher.2024.01.013>
- [6] Genovese. G., Heibi. I., Peroni. S., Pescarin, S. Leveraging virtual technologies to enhance museums and art collections: insights from project CHANGES. arXiv preprint. 2024 <https://doi.org/10.48550/arXiv.2412.05880>

ФІЛЬТРАЦІЙНІ ДЕФОРМАЦІЇ ТА ХІМІЧНЕ НАВАНТАЖЕННЯ ВОДНИХ СИСТЕМ У ЗОНІ ВПЛИВУ ХВОСТОСХОВИЩ

Ольга Єфремова, Галина Білецька

Хмельницький національний університет

Corresponding author: yefremovaao@khnmu.edu.ua, biletskaha@khnmu.edu.ua

The study analyzes the impact of tailings ponds on water systems through filtration deformation and chemical loading. Ukrainian examples show an increase in groundwater levels, changes in gradients, suffusion, and saltwater plumes; an increase in TDS, SO_4^{2-}/Cl^- , and the mobilization of Zn and Ni. The risks of “red mud” are outlined. An integrated package of solutions (screens, drainage, dust suppression, recultivation, and long-term monitoring) is proposed to manage the impacts.

Keywords: tailings storage facility; filtration deformations; chemical load; groundwater; TDS; heavy metals.

Сучасні масштаби видобутку і переробки мінеральної сировини зумовлюють утворення значних обсягів промислових відходів. В Україні їхнє щорічне накопичення оцінюють приблизно у 1 млрд т, при цьому на повторне використання спрямовується лише 10–15 % відходів, а площи складування перевищують 160 тис. га [1].

Джерелами потенційної екологічної та токсикологічної небезпеки є хвостосховища. Фільтраційні втрати, аерогенне розсіювання пилу та міграція розчинених і завислих речовин є причиною забруднення ґрунтів, підземних і поверхневих вод. Також хвостосховища зумовлюють переформатування водного режиму територій, у випадку прориву дамб можуть бути причиною затоплення. Екологічні ризики зафіксовано на хвостосховищі Калуш-

Голинського калійного родовища, у зонах уранової спадщини Придніпровського хімічного заводу (дев'ять хвостосховищ, зокрема «Дніпровське», «Сухачівське» та ін.), на підприємствах глиноземної промисловості, де утворюються «червоні шлами». Незважаючи на те, що вимоги до проєктування, будівництва, експлуатації та консервації хвостосховищ регламентовані нормативними документами (ДБН В.2.4-2011), упродовж їх експлуатації і після закриття підприємств виникає низка екологічних проблем.

Фільтраційні деформації – це комплекс змін у масиві гірської породи та водоносних горизонтах під дією техногенного навантаження хвостосховищ. До них відноситься підняття рівня ґрунтових вод, зміни напрямів і швидкостей фільтрації, формування зон суфозії та карстово-суфозійних процесів [2]. У зоні впливу хвостосховищ особливо чутливими до таких змін і процесів є карбонатні, сульфатні та галоїдні гірські породи. Такі породи поширені приблизно на 75 % території України, що підвищує її вразливість до засолення, вилуговування і підтоплення. Гідродинамічні процеси, що відбуваються в зоні впливу хвостосховищ підкоряються закону Дарсі з урахуванням неоднорідної проникності гірських порід і можливих нелінійних ефектів при суфозії.

Під впливом фільтраційних втрат із чаші хвостосховища фіксується підняття рівня ґрунтових вод на 2–10 м і переформатування локального підземного стоку; в карбонатних породах інтенсифікується вилуговування, зростає їх пористість і водопроникність, що прискорює розвиток «плюмів» мінералізованих вод (концентрація до 5 г/л) протяжністю до 3 км [3]. Зміна водного балансу збільшує внесок техногенного дренажу в локальні водотоки і підвищує їхню уразливість до епізодичних «піків» забруднення під час злив та аварійних скидів.

Хімічне навантаження хвостосховищ визначається сумарним потоком розчинених речовин (TDS), кількістю іонів (SO_4^{2-} , Cl^- , NO_3^-), важких металів (передусім Zn, Ni) і колоїдів, що мігрують із техногенного тіла у підземні та поверхневі води [4]. Для «червоних шламів» додатковими факторами ризику є висока лужність, підвищена електропровідність і пилоутворення відкритих «пляжів». Просторові «плюми» забруднення можуть формуватися на відстані кількох кілометрів від хвостосховища (зафіковано ареали до 25 км² і вертикальні зони змін на глибині 30–35 м) залежно від гідрогеологічної будови території, гіdraulічних градієнтів і режиму експлуатації [3].

Встановлюється кореляція «склад хвостів – фон ґрунтів і вод». Біля хвостосховищ з підвищеним вмістом Zn / Ni у відходах спостерігаються підвищені концентрації цих елементів у ґрунтах і природних водах. Надходження забруднюючих речовин у навколошнє середовище часто відбувається в результаті перенесення пилу вітром з подальшим елювіюванням у ґрутовий профіль та інфільтрацією в підземні водоносні горизонти.

Комбінована дія вітрової ерозії і гравітаційної / капілярної фільтрації формує парадинамічну систему, що трансформує ландшафтно-гідрогеохімічні умови на відстані від сотень метрів до кількох кілометрів від хвостосховища. Ширина зони вторинного пилового забруднення може сягати 0,7–0,9 км і більше, а навантаження понад 58 кг·га⁻¹·міс. пригнічує ріст рослин і зумовлюють зміни ґрунтових біоценозів [5]. Наприклад, домішка 5–10 % хвостів у ґрунті знижує схожість насіння, активність рослинних ферментів і родючість ґрунту. Присутність важких металів підсилює негативний ефект.

З огляду на наведені ризики, управління впливами має базуватися на інтегрованому підході. Протифільтраційні заходи включають екрані з ущільненої глини/бітуму/ геомембрани, переходоплювальні дренажні лінії та бар'єрні свердловини з безперервним контролем фільтрату (вітрата, склад, байпас-схеми). Для зменшення виділення пилу необхідно зволожувати поверхні хвостосховищ, застосовувати пилопригнічення (полімерні чи соляні стабілізатори за умови екологічного аудиту), створювати вітrozахисні насадження та екранувати схили [6]. Рекультивацію доцільно здійснювати у дві стадії: гірничотехнічна (планування, протиерозійні споруди, регулювання стоку) та біологічна (сільськогосподарська або лісова рекультивація, вибір толерантних до забруднення видів рослин, комбіновані

фітоценози, фіторемедіація). Для токсичних і посушливих умов виправдані геомеліоративні і гідромеліоративні моделі. Система моніторингу має поєднувати п'єзометричні спостереження (рівні, градієнти, напрями потоків) і гідрохімію (pH, Eh, електропровідність, TDS, SO_4^{2-} , Cl^- , NO_3^- , Zn, Ni за ICP-методами). Відбір проб потрібно здійснювати не рідше чотирьох разів на рік. Також потрібно здійснювати щомісячний контроль у «гарячих точках». Для оцінювання переносу доцільно використовувати моделі MODFLOW / MT3DMS (або їх аналоги) з калібруванням за п'єзометричними поверхнями і маркерами складу, сценарним аналізом режимів «базовий», «інтенсивні опади / аварія», «післярекультиваційний» і GIS-картуванням ізоліній рівнів або концентрацій та виділенням «гарячих зон».

Практична імплементація заходів для зменшення фільтраційних деформацій та хімічного навантаження водних систем у зоні впливу хвостосховищ передбачає такі заходи:

- створення інтегрованої програми моніторингу з урахуванням сезонності та екстремальних подій (зливи, вітрові шторми), що забезпечує відкритий доступ до інформації;
- створення карт «гарячих зон» зі щорічним ранжуванням ділянок для пріоритетних інвестицій (екрані, дренаж, рекультивація);
- пилопригнічення на відкритих пляжах і схилах, створення вітrozахисних насаджень;
- пілотування фіто- та геомеліоративних рішень для токсичних субстратів;
- розроблення різноманітних моделей як обов'язкового додатка до паспортів безпеки хвостосховищ;
- управління хвостосховищем після його закриття (герметизація чаші, моніторинг не менше 10 років, аудити ефективності екранів і дренажів).

Отже, хвостосховища зумовлюють стійкі фільтраційні деформації (підняття рівня поверхневих і підземних вод, супфозія, зміни гідрохімічних градієнтів) і значне хімічне навантаження на водні системи (зростання TDS, підвищення SO_4^{2-} і Cl^- , формування «плюмів» Zn та Ni). Під впливом повітряних і водних потоків вплив цих змін поширюється на відстані від сотень метрів до кілометрів. Для зменшення ризиків необхідно застосовувати комплексний підхід, що поєднує протифільтраційні екрані і перехоплювальні дренажі, пилопригнічення, рекультивацію, а також постійний моніторинг і складання карт ризику.

Список використаних джерел

- [1] Дослідження щодо загроз для транскордонних вод України / Офіційний сайт Український кризовий медіа-центр. – URL: <https://uacrisis.org/uk/prezentyvaly-doslidzhennya-shhodo-zagroz-dlya-transkordonnyh-vod-ukrayiny>.
- [2] Koščova M. Geo-Environmental Problems of Open Pit Mining: Classification and Solutions / M. Koščova, M. Hellmer, S. Anyona, T. Gvozdkova // Web of Conferences. – 2018. – Access mode: <https://doi.org/10.1051/e3sconf/20184101034>.
- [3] United Nations Environment Programme, International Council on Mining and Metals, & Principles for Responsible Investment. Global Industry Standard on Tailings Management. – 2020 – Access mode: <https://wedocs.unep.org/20.500.11822/36139>.
- [4] Mitryasova V. «Environmental risk and state of surface water resources» in Climate change & sustainable development: new challenges of the century: Monograph / V. Mitryasova, Y. Pohrebennyk, A. Bezsonov. – Mykolaiv: PMBSNU – Rzeszow: RzUT, 2021. – P. 279–288. – Access mode: <https://chmnu.edu.ua/wp-content/uploads/MONOGRAPH-2.pdf>.
- [5] Коптєва Т. С. Висотна диференціація та різноманіття гірничопромислових ландшафтів Криворіжжя: дисер. на здобуття наукового ступеня доктора філософії (PhD) / Т. С. Коптєва. – Вінниця: ВДПУ, 2021. – 163 с.
- [6] Шибанова А. М. Оцінювання впливу відходів гірничо-хімічних підприємств на якість поверхневих вод / А. М. Шибанова, О. П. Мітрясова, Е. А. Джумеля, М. В. Руда // Екологічна безпека та природокористування, вип. 1(45), 2023. – С. 17–28. – URL: <https://doi.org/10.32347/2411-4049.2023.1.17-28>.

ЗМІСТ

1. Innovative technological solutions in resource saving, green chemistry, and sustainable development / Інноваційні технологічні рішення в галузі ресурсозбереження, зеленої хімії та сталого розвитку

Tabachuk O., Khokhotva O.

The global green chemistry innovation and networking program in Ukraine:
building capacity, accelerating innovations and strengthening industry–science partnerships 7

Nehorui V., Paraska O., Petru M.

Environmentally safe technologies for antimicrobial treatment of fleece using biosurfactants 9

Ivanishena T.

An integrated model for assessing the sustainability of fashion industry products 13

Paraska O., Broncek J., Bonek M.

Improving textile hygiene using bio-surfactant antimicrobial compositions 16

Synyuk O., Hedz O., Yunas Y.

Innovative approach to fiber feeding into the mold during footwear sole manufacturing 18

Андрусяк Д.

Аналітичне забезпечення якості питної води: проблеми і перспективи для України 20

Козарь О., Жигуц Ю., Демченко В.

Вивчення нових форм модифікованого закарпатського цеоліту як основи полімерних нанокомпозицій
для створення антибактеріальних текстильних та шкіряних матеріалів 23

Бойко М., Бойко О.

Концепція «нульових відходів» у косметологічному виробництві:
технології повторного використання залишків сировини 26

Chershnia Z., Ivanishena T., Łoś K.

Composite systems of solid shampoos with improved foaming and structural characteristics 28

Holovenko T., Hulai O., Pavlenko V.

Industrial hemp: current challenges and prospects for sustainable bio-based raw material in industry 31

Магдійчук А.

Оцінка впливу сапонітової глини на фітоекстракцію важких металів 34

Качур О., Загричук Г.

Дослідження ульцерогенної дії густого екстракту з квітів цинії витонченої 37

Kuleshova S., Penkova A.

Upcycling approach to designing an original clothing collection in street grunge style 38

Kuleshova S., Ahafonova V., Pylypenko Y.

Green business model for maxsport 40

Kovalchuk D., Kuleshova S.

Діджитал-технології оптимізації проектування кімоно для бразильського джиу-джитсу та грепплінгу 43

**2. Modern materials and technologies for industry, energy, transport, and construction /
Сучасні матеріали та технології для промисловості, енергетики, транспорту та будівництва**

Kolomiets O., Cherniukh I., Morad V., Zhu C., Sekh T., Svyrydenko M., Shcherbak K., Boehme S., Raino G., Bodnarchuk M., Kovalenko M.	
Perovskite nanocrystals as novel light sources: from the synthesis to application	49
Gieriel M., Buratowski T., Gorban A.	
Bio-inspired design in nanorobotics	50
Кульбаченко В., Горбовий А.	
Сонячна панель longi solar LR7-54HTH-465M: конструктивні особливості, кристалічна структура та технологічні інновації	52
Radek N., Michalski M.	
Polymer coatings for military applications	55
Tegginamath A., Petru M.	
Numerical modelling of hybrid composites for selected automotive parts	58
Polishchuk A., Polishchuk O., Bonek M., Tolstiuk A.	
Kevlar fiber-reinforced polymer composites for additive manufacturing (3D printing)	61
Тарасюк М., Мица В.	
Дослідження процесу ціанотипії для декоративного забарвлення текстильних матеріалів	64
Ovcharuk M., Topchii O.	
Властивості та будова природних муцинів	67
Tsymbalyuk Y., Martynyuk A., Fedoriv V.	
Research of the brinse regeneration process by tangential microfiltration method in cheese mass production	70
Zhigut Y., Kozar O.	
Innovative technologies for combined welding of materials	72
Dmytryiv G., Kordan V., Zelinska O., Pavlyuk N., Pavlyuk V., Silva B., Kumar A., Sartori S., Hauback B., Sjästad A.	
Mg-based alloys as perspective hydrogen storage materials	75
Horiashchenko S., Janchysena D.	
Development of additive technology for prosthetic legs	77
Єрій А., Синюк О.	
Дослідження ефективності кавітаційного методу імпрегнування текстильних матеріалів	79
Tkachuk H., Sydoruk O., Tkachuk A., Biletska H.	
GC-MS analysis of toothpaste composition	82
Рябчиков М., Лемкович Ю.	
Технологія створення і використання наномагнітних текстильних матеріалів для створення смарт-одягу	86
3. Technologies for recycling, waste utilization, and reuse / Технології переробки, утилізації та повторного використання відходів	
Dumanska I.	
Reimagining waste as resource: financial risk and customs logistics in circular technology systems	91
Підгайчук С., Смачило О., Смутко С., Машовець Н., Шевчук В.	
Очищення відпрацьованих трансформаторних олів природним сорбентом	94
Боровик Н.	
Переробка, утилізація та повторне використання відходів: екологічні інновації проектів ReWay та EcoNotes	96
Гурна І.	
Утилізація харчових відходів	98

Наукове видання

**ІННОВАЦІЙНІ ТЕХНОЛОГІЇ І МАТЕРІАЛИ
ДЛЯ ПРОМИСЛОВОСТІ ТА ДОВКІЛЛЯ
(ITMIE 2025)**

**INNOVATIVE TECHNOLOGIES AND MATERIALS
FOR INDUSTRY AND THE ENVIRONMENT
(ITMIE 2025)**

Збірник матеріалів

*Міжнародної науково-практичної конференції,
присвяченої 10-річчю Лабораторії досліджень мінералів
кафедри хімії та хімічної інженерії*

11–12 грудня 2025 (Хмельницький, Україна)

(українською та англійською мовами)

Відповідальний за випуск: *Параска О. А.*

Технічний редактор: *Магдійчук А. П., Іцуک Т. І.*

Технічне редагування, коректування і верстка: *Чопенко О. В.*

Художнє оформлення обкладинки: *Параска О. А., Басалюк А. М., Басалюк Л. Р.*

Підп. до друку 10.12.2025. Ум. друк. арк. – 9,59. Обл.-вид. арк. – 10,76.

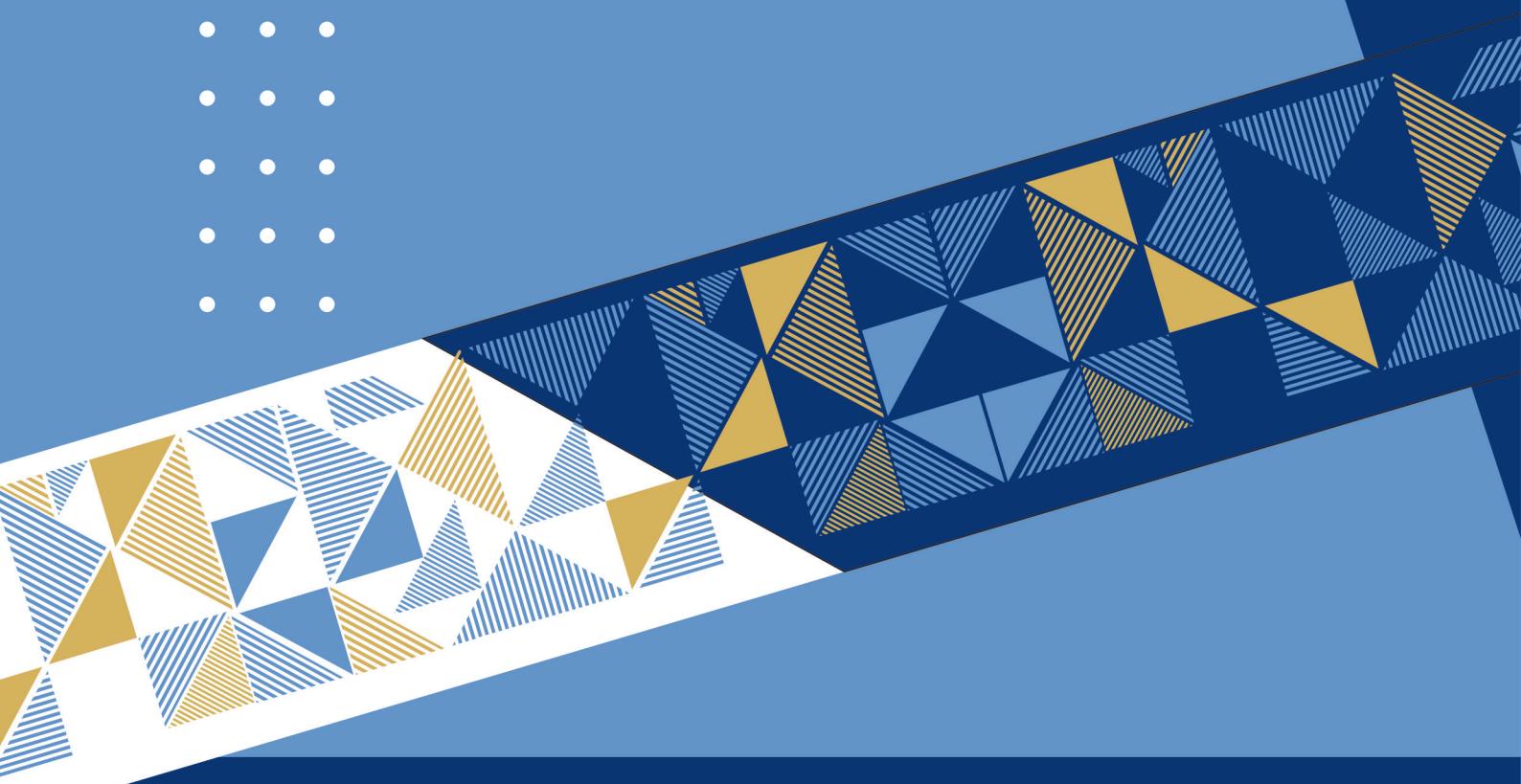
Формат 60×84/16, папір офсетний. Друк різографією.

Наклад 50, зам. № 110/25

Віддруковано в редакційно-видавничому відділі ХНУ.

29016, м. Хмельницький, вул. Інститутська, 7/1

Свідоцтво про внесення в Державний реєстр, серія ДК № 4489 від 18.02.2013 р.


ANNA MAHDIIUCHUK
ORGANIZING COMMITTEE CHAIRMAN
PHD, SENIOR LECTURER OF THE
DEPARTMENT OF CHEMISTRY AND
CHEMICAL ENGINEERING

OLGA PARASKA
CHAIRMAN
DR. IN ENG. SCIENCE, PROF.
HEAD OF THE RESEARCH
LABORATORY OF MINERALS

OLEG SYNYUK
VICE-CHAIRMAN
DR. IN ENG. SCIENCE, PROF.
VICE-RECTOR OF SCIENCE
KHMELNYTSKYI NATIONAL UNIVERSITY

KHMELNYTSKYI NATIONAL UNIVERSITY
Instytutska str., 11, Khmelnytskyi, Ukraine